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ABSTRACT

The vortex coronagraph (VC) is a new generation small inner working angle (IWA) coronagraph currently offered
on various 8 m class ground-based telescopes. On these observing platforms, the current level of performance is
not limited by the intrinsic properties of actual vortex devices, but by wavefront control residuals and incoherent
background (e.g., thermal emission of the sky), or the light diffracted by the imprint of the secondary mirror
and support structures on the telescope pupil. In the particular case of unfriendly apertures (mainly large central
obscuration) when very high contrast is needed (e.g., direct imaging of older exoplanets with extremely large
telescopes or space-based coronagraphs), a simple VC, like most coronagraphs, cannot deliver its nominal
performance because of the contamination due to the diffraction from the obscured part of the pupil. Here,
we propose a novel yet simple concept that circumvents this problem. We combine a vortex phase mask in the
image plane of a high-contrast instrument with a single pupil-based amplitude ring apodizer, tailor-made to exploit
the unique convolution properties of the VC at the Lyot-stop plane. We show that such a ring-apodized vortex
coronagraph (RAVC) restores the perfect attenuation property of the VC regardless of the size of the central
obscuration, and for any (even) topological charge of the vortex. More importantly, the RAVC maintains the IWA
and conserves a fairly high throughput, which are signature properties of the VC.
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1. INTRODUCTION

The main goal of high-contrast imaging is to find and,
most importantly, characterize extra-solar planetary systems.
Indeed, isolating the signal of exoplanets from the glare of
their host star enables us to, e.g., measure and constrain their
relative orbital motions with precise astrometry, characterize
the planetary atmospheres through spectro-photometry, and
shed some light on planet–disk interactions (see, for instance,
Oppenheimer & Hinkley 2009; Absil & Mawet 2010; Neuhäuser
& Schmidt 2012). Coronagraphy, which is now a generic term
for qualifying any techniques used to improve dynamical range
in images, promises to be high-contrast imaging’s sharpest tool,
but requires exquisite image quality and stability to perform
efficiently.

The vortex coronagraph (VC; Mawet et al. 2005) is one
of the most advanced coronagraphs recently made operational
at major telescopes (Mawet et al. 2011b, 2012). The VC
offers a small inner working angle (IWA), potentially down
to the diffraction limit (0.9λ/D), a clear 360◦ off-axis field of
view/discovery space, an unlimited outer working angle, high
throughput, intrinsic and/or induced achromaticity, operational
simplicity, and compatibility with the Lyot coronagraph layout.
It has also recently demonstrated �10−9 raw contrast levels
in the visible on the High Contrast Imaging Testbed at the
Jet Propulsion Laboratory (Mawet et al. 2012; Serabyn et al.
2013). It is also at the crux of state of the art high-contrast
instruments on various 5–8 m class telescopes. Since it opens a
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new parameter space at small separations, it has enabled recent
scientific results at Palomar in the H and K bands (Mawet et al.
2010b, 2011a; Serabyn et al. 2010; Wahl et al. 2013), and at
the Very Large Telescope (Mawet et al. 2013; Absil et al. 2013;
J. Milli et al. 2013, in preparation) in the L′ band. It is currently
being implemented on SCExAO at Subaru (Martinache et al.
2012) and on LMIRCAM at the Large Binocular Telescope
(Skrutskie et al. 2010; Esposito et al. 2011). It is also a strong
candidate for an exoplanet characterization space-based mission
(WFIRST-AFTA, see Spergel et al. 2013a, 2013b; ACCESS, see
Trauger et al. 2010; and SPICES, see Boccaletti et al. 2012), for
the European-Extremely Large Telescope (Mawet et al. 2012),
and the Thirty Meter Telescope.

However, as for all other coronagraphs, the VC is sensitive
to the aperture geometry, and particularly to secondary obscu-
rations (Mawet et al. 2010a, 2011c). This sensitivity stems from
the fact that a Vortex phase ramp in the focal plane of a tele-
scope always diffracts light to the outer regions of circularly
symmetric pupil intensity discontinuities. Thus, as expected, a
single vortex will move light outside of the secondary obscura-
tion and support structures, right into the primary pupil image
(Figure 1(a)). The subsequent contrast degradation is propor-
tional to the obscured area (r0/R)2, with r0 and R being the
radii of the central obscuration and primary mirror, respectively
(Mawet et al. 2010a).

Recently, we proposed a method (Mawet et al. 2011c) based
on multiple vortices that, without sacrificing throughput, reduces
this residual light leakage to (r0/R)2n, with n being the number
of coronagraph stages. This method thus enabled high contrasts
to be reached even with an on-axis telescope, but at the cost
of increased optical complexity, and for an imperfect result.
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Figure 1. (a) Classical VC of topological charge 2 with a centrally obscured
telescope of radius R (r0 is the radius of the secondary shadow). The residual
field interior to the pupil (between r0 and R) leads to contrast degradation in
the subsequent focal plane image, as the fraction of the total energy remaining
inside the pupil is (r0/R)2, or 0.04 for a 20% central obscuration. (b) RAVC
of topological charge 2. The ring of radius r1 and amplitude transmittance t1
is optimized so that the overlap of the self-similar vortex functions at the Lyot
plane issued from the central obscuration (green curve) and the ring (blue curve)
perfectly cancel each other between r1 and R (red curve).

(A color version of this figure is available in the online journal.)

Here, we propose a new, simple and elegant solution to this
problem that renders the VC completely insensitive to central
obscurations with a single VC stage.

Section 2 presents the principle of the ring-apodized vortex
coronagraph (RAVC), starting with the charge 2 VC. Section 3
develops the charge 4 case, while Section 4 lays out the basis for
a generalization to higher order VCs. In Section 5, we discuss the
various trade-offs between sensitivity to low-order aberrations,
stellar size, and throughput. Section 6 presents current high-
performing technical solutions to manufacture the VC and
the apodizer, and to mitigate the diffraction from the support
structures, demonstrating the RAVC’s high level of technology
readiness. Section 7 summarizes the concept principles and puts
it into the context of future Extremely Large Telescopes (ELT)
and space-based missions.

2. PRINCIPLE OF THE RAVC

The RAVC is based on the superposition principle and the
vortex properties of moving light in and out of circular apertures.

Its principle relies on modulating the entrance pupil with one
(or a set of) concentric ring(s) of well chosen size(s) and
transmittance(s), in order to yield perfect cancellation of on-
axis sources at the Lyot-stop level. In the following, we show
that perfect solutions can be found for any topological charge.
We will start with the case of topological charge 2 RAVC, and
detail the derivation for charge 4 RAVC in the next section. We
finally generalize this concept for arbitrary topological charges
in Section 4.

2.1. The Simple Case of Charge 2 RAVC

The effect of a charge l = 2 vortex phase ramp, ei2θ , applied
to the ideal focal plane field (Airy pattern), 2J1(kρR)/kρR, of
a filled circular aperture of radius R, where k is the wavenum-
ber and ρ is the radial coordinate in the focal plane, has been
calculated analytically by various authors (Mawet et al. 2005;
Jenkins 2008; Swartzlander 2009; Carlotti et al. 2009).
The Fourier transform of the focal plane electrical field
ei2θ (2J1(kρR)/kρR) gives the field in the pupil plane down-
stream from the coronagraph (Lyot-stop plane). Dropping the
azimuthal phase term, this transform yields

EL(r) =
{

0 r < R(
R
r

)2
r > R.

(1)

Using the superposition principle, a centrally obscured pupil
can be seen as the difference between a filled pupil of radius R
and a smaller filled pupil of radius r0, yielding a pupil field after
the topological charge 2 vortex of (Mawet et al. 2011c),

EL(r) =

⎧⎪⎨
⎪⎩

0 r < r0

− (
r0
r

)2
r0 < r < R[(

R
r

)2 − (
r0
r

)2
]

r > R.

(2)

The Lyot stop then blocks everything for r > R, so from now
on, we will not consider this area in order to focus on the region
of interest, i.e., r < R. Indeed, the residual field interior to the
pupil (between r0 and R) leads to contrast degradation in the
subsequent focal plane image, as the fraction of the total energy
remaining inside the pupil is (r0/R)2, or 0.04 for a 20% central
obscuration.

Consider now that the entrance pupil has an additional ring
with r from r1, such that r0 < r1 < R, to the outer radius R,
characterized by an amplitude transmission coefficient t1 for
r1 < r < R. Note that the interior of the ring, r0 < r < r1, has a
transmission of t0 = 1. Using the same reasoning, we now have
within the Lyot plane after the charge 2 vortex,

EL(r) =
⎧⎨
⎩

0 r < r0

− (
r0
r

)2
r0 < r < r1

(1 − t1)
(

r1
r

)2 − (
r0
r

)2
r1 < r < R.

(3)

It clearly appears that the degrees of freedom introduced
by the ring apodizer (namely, its size r1 and transmittance t1)
provide enough leverage to completely cancel the light within
r1 < r < R. Indeed, if

(1 − t1) =
(

r0

r1

)2

, (4)

then the field in the Lyot plane for r1 < r < R is completely
nulled. Figure 1(b) shows one-dimensional calculations and
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Figure 2. RAVC2. Top left: entrance pupil with central obscuration r0 = 0.2R.
Top right: ring apodizer of inner radius r1 and amplitude transmittance t1,
optimized for maximum throughput. Bottom left: response of the vortex at the
Lyot plane showing the contamination from the central obscuration 1/r2 vortex
function. Bottom right: response of the RAVC at the Lyot plane, showing the
perfect null within r1 < r < R.

(A color version of this figure is available in the online journal.)

two-dimensional simulations where, as expected, the vortex
fields issued from the central obscuration and the ring perfectly
balance and cancel each other at the Lyot plane, between r1 and
R downstream from the VC (see also Figure 2). The single Lyot
stop is then designed to block the light for 0 < r < r1, thus
effectively increasing the size of the final central obstruction,
and of course to block the light for r > R.

2.2. Throughput Optimization

There is a whole set of solutions to Equation (4) with
0 < t1 < 1 and r0 < r1 < R. However, the best solution
will maximize the throughput T for a given r0. T is defined as
the energy going through the ring r1 < r < R, normalized
by the energy nominally transmitted by the centrally obscured
telescope aperture, or

T = t2
1

(
1 − (

r1
R

)2)
1 − (

r0
R

)2 . (5)

Substituting Equation (4) into Equation (5), and differenti-
ating T with respect to t1, we find the optimal ring parameters
associated with a charge 2 VC:

⎧⎨
⎩

t1,opt = 1 − 1
4

(
R2

0 + R0

√
R2

0 + 8
)

R1,opt = R0√
1−t1,opt

, (6)

where R0 = r0/R and R1 = r1/R are the relative radii. Note that
t1,opt and R1,opt are functions of r0/R only (see Figure 3), which
is remarkably analogous to the problem associated with design-
ing apodizers for apodized pupil Lyot coronagraphs (APLC)
with hard edge focal plane masks (Soummer 2005). Indeed, in
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Figure 3. Optimal apodizer parameters for a charge 2 ring-apodized vortex
coronagraph (RAVC2), t1,opt and R1,opt, as a function of r0/R.

(A color version of this figure is available in the online journal.)

both cases, there only exists a unique apodizer configuration that
maximizes throughput while yielding a chosen level of starlight
extinction. However, due to the nature of the VC, this optimal
solution turns out to rely on sharp variation of the amplitude
profile while the optimal solutions for an APLC are smooth.

3. CHARGE 4 RAVC

The charge 2 RAVC design is simple and the analytical solu-
tion very easy to find. The cancellation of the field at the Lyot
stop within the outer ring and the throughput maximization pro-
vide two equations that fully and unambiguously characterize
the apodizer’s two free parameters. The charge 4 case is similar
in nature but slightly less trivial.

3.1. Two Rings for Perfect Cancellation

As the topological charge of the VC increases, so does the
complexity of its response at the Lyot-stop plane. Following
Mawet et al. (2005) and Carlotti et al. (2009), for a topological
charge 4 vortex, we have

EL(r) =
{

0 r < R

2
(

R
r

)2 − 3
(

R
r

)4
r > R.

(7)

The amplitude function after the vortex is now a polynomial
of the order of −4, following the topological charge l of the
vortex. This function is not self-similar anymore, even though
each individual term is. For the sake of simplicity, let us rename
this polynomial

V4(r, R) = 2

(
R

r

)2

− 3

(
R

r

)4

. (8)

A single additional ring will not provide enough leverage to
cancel both terms, so we will now consider adding a second
ring with r from r2, such that r1 < r2 < R, to the radius R,
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characterized by an amplitude transmission coefficient t2 for
r2 < r < R. Note that the first ring is now of inner radius r1,
such that r0 < r1 < R, and outer radius r2, characterized by an
amplitude transmission coefficient t1 for r1 < r < r2. Note that
the interior of the first ring, r0 < r < r1, still has a transmission
t0 = 1.

Using the same reasoning as before, we now have within the
Lyot plane after the charge 4 vortex and this double ring apodizer

EL(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 r < r0
−V4(r, r0) r0 < r < r1
(1 − t1)V4(r, r1) − V4(r, r0) r1 < r < r2
(t1 − t2)V4(r, r2)

+(1 − t1)V4(r, r1) − V4(r, r0) r2 < r < R.
(9)

We are now seeking solutions that perfectly cancel the light
within the outer ring r2 < r < R, using the four free parameters
constraining the ring sizes and transmittances, i.e., r1, r2 and
t1, t2;

(t1 − t2)V4(r, r2) + (1 − t1)V4(r, r1) − V4(r, r0) = 0. (10)

Finding solutions to this under-constrained problem is not
straightforward as the V4(r, R) functions are not self-similar.
However, by separating the quadratic and fourth order terms,
and since r > 0, we can rewrite Equation (10) as

{
(t1 − t2) (r2)2 + (1 − t1) (r1)2 − (r0)2 = 0
(t1 − t2) (r2)4 + (1 − t1) (r1)4 − (r0)4 = 0.

(11)

Equation (11) is a system of two equations with four
unknowns.

3.2. Throughput Optimization

In order to better constrain the set of possible solutions, we
once again introduce throughput as our figure of merit, but now
T is defined as the energy going through the ring r2 < r < R:

T = t2
2

(
1 − (

r2
R

)2)
1 − (

r0
R

)2 . (12)

Closer examination of the throughput expression indicates
that optimal solutions are those that maximize the outer ring
transmittance t2 while keeping r2 as small as possible. Cascading
both constraints down to Equation (11), it is easy to derive that
such a condition is met for t1 = 0. Indeed, with t1 = 0, the
modulation terms in r1 and r2 introduced by the rings to balance
the central obscuration r0 terms have maximum weights. Setting
t1 = 0 allows us to simplify the equations greatly, yielding the
following charge 4 ring-apodized VC fundamental formulae for
optimal throughput:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R1 =
√√

R2
0(R2

0 + 4) − 2R2
0

R2 =
√

R2
1 + R2

0

t2 = R2
1−R2

0

R2
1 +R2

0

, (13)

where R0 = r0/R, R1 = r1/R, and R2 = r2/R are the radii
relative to the entrance pupil outer radius R. Figure 4 shows
the perfect cancellation of the RAVC4 fields at the Lyot within
r2 < r < R. One can also explore the entire parameter space
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Figure 4. RAVC4. Top left: entrance pupil with central obscuration r0 = 0.2R.
Top right: ring apodizer, with two rings of radius r1 < r2 and amplitude
transmittance 0 � t1, t2 � 1, optimized for maximum throughput. Bottom
left: response of the vortex at the Lyot plane showing the contamination from
the central obscuration V4(r, R) vortex function (see Equation (8)). Bottom
right: response of the RAVC4 at the Lyot plane, showing the perfect null within
r2 < r < R.

(A color version of this figure is available in the online journal.)

(r1, r2, t1, t2) by solving numerically the following optimization
problem:

Maximize t2
2

(
1 −

( r2

R

)2
)

(14)

s.t.

{
(t1 − t2) (r2)2 + (1 − t1) (r1)2 − (r0)2 = 0
(t1 − t2) (r2)4 + (1 − t1) (r1)4 − (r0)4 = 0.

This optimization naturally yields solutions for which t1 = 0
for all sizes of central obscurations.

4. GENERALIZATION TO HIGHER (EVEN)
TOPOLOGICAL CHARGES

After detailing the design of charge 2 and 4 RAVCs, for which
simple closed form analytical expressions of the apodizer critical
dimensioning parameters can be found, we now generalize the
concept of the RAVC to higher topological charges.

4.1. The Number of Rings is Equal to Half the Charge

From Carlotti et al. (2009), we know that for a vortex of
topological charge l, the vortex function at the Lyot-stop plane
downstream from the coronagraph can be written

Vl(r, R) = il
R

r
Z1

l−1

(
R

r

)
∝

l/2∑
j=1

αj

(
R

r

)2j

, (15)

where Z1
l−1(R/r) is the radial Zernike polynomial Zm

n (r)
normalized so that Zm

n (1) = 1. The real-valued coefficients
αj are computed from the radial Zernike polynomials with,
e.g., α1 = −1 for l = 2, and α1 = +2 and α2 = −3 for
l = 4 (see Carlotti et al. 2009 for additional details). Thus, the
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field diffracted in the Lyot plane by the imprint of the central
obscuration is always a radial polynomial of the order of −l.
Consequently this polynomial can be perfectly nulled if the
coefficient associated with each order is zero. Designing an
apodizer with l/2 concentric rings, with r1 < r2 < · · · < rl/2
and ti > 0, provides enough lever arm to achieve this perfect
cancellation. The equations driving the design of the apodizer
are then

l/2∑
j=1

[
(tj−1 − tj )rm

j

] − rm
0 = 0 for m = 2, 4, . . . , l. (16)

4.2. Throughput Optimization

For the case of an arbitrary charge vortex it becomes quite
challenging to simplify the problem a priori by setting the
transmittance of one or several rings to zero, as we did in the case
of a charge 4 RAVC. However, finding the optimal ring design
with respect to throughput optimization can be easily carried
out by extending the methodology presented in Equation (14).
Indeed, the throughput is always a function of the outer ring
diameter rl/2 and transmittance tl/2, as follows

T = t2
l/2

(
1 − ( rl/2

R

)2)
1 − (

r0
R

)2 . (17)

One can the explore the entire parameter space (r1, r2, . . . , rl/2,
t1, t2, . . . , tl/2) by solving the following optimization problem:

Maximize t2
l/2

(
1 −

( rl/2

R

)2
)

(18)

s.t.
l/2∑
j=1

[
(tj−1 − tj )rm

j

] − rm
0 = 0 for m = 2, 4, . . . , l.

Solving this system of equations for rj and tj is non-trivial for
higher topological charges, and requires numerical optimization
methods. We have verified the existence of solutions for charges
up to l = 8.

5. PERFORMANCES

Here we discuss the performance of the RAVC family
in terms of contrast, (off-axis) throughput, and IWA. For
perfect optics and perfect VCs of various (even) topological
charges, there exist RAVC solutions providing infinite contrast
whatever the central obscuration. Throughput is a decreasing
function of the topological charge and central obscuration size
(see Equation (17)). Indeed, throughput is always a function
of the outer ring area, which gets smaller when the charge
increases (more rings necessary) and, of course, when the central
obscuration gets larger.

Higher topological charges l, which trade off IWA (e.g.,
IWAl=2 = 0.9λ/D, IWAl=4 = 1.75λ/D), are desired when
the telescope size increases (to mitigate the stellar size effect) or
when sensitivity to low-order aberrations becomes the limiting
factor (Mawet et al. 2010a). Indeed, Jenkins (2008) showed that
the sensitivity of the VC to pointing offsets θ , in units of λ/D,
is proportional to θ l , with θ � 1 (the same laws apply to the
sensitivity to stellar size, which can be seen as an incoherent
sum of pointing offsets).

Figure 5 presents a throughput curve for RAVC2 and RAVC4
as a function of central obscuration size. For a 10% central
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Figure 5. Theoretical maximum throughput of the RAVC2 and RAVC4 with
transmissive ring apodizers for various obscuration relative diameters r0/R. The
throughput decreases with the topological charge and central obscuration.

(A color version of this figure is available in the online journal.)

obscuration, the throughput for the RAVC2 is �75% and �65%
for the RAVC4. For 20%, the throughput for the RAVC2 is
�55% and �40% for the RAVC4. Note that the IWA of the
VC, classically defined as the 50% off-axis throughput point
(relative to the maximum), is not affected by the apodizer in
the topological charge 2 case (see Figure 6, top), but marginally
affected for the charge 4 case (see Figure 6, bottom), especially
as the size of the central obscuration increases.

The RAVC solution is thus a good compromise between
the numerically optimized apodizer masks presented in Carlotti
et al. 2013 (see also Section 6.5), as it has comparable throughput
but with a full search area, and the phase-induced amplitude
apodization complex mask coronagraph (PIAACMC; Guyon
et al. 2013), which involves more complicated optics.

6. TECHNICAL FEASIBILITY

In this section, we discuss the technical feasibility of the
RAVC, from the current technology readiness of the VC to
the ring apodizer manufacturability and the optical layout of
the concept, including three practical solutions to mitigate the
diffraction from the secondary support structures.

6.1. Vortex Mask Manufacturing

The vector vortex coronagraph (VVC; Mawet et al.
2005, 2009) is one possible and easy route to manufacture
VCs.6 It advantageously makes use of the geometrical or
Pancharatnam–Berry phase, which is achromatic by nature. The
VVC is based on space-variant halfwave plates, circularly sym-
metric in the charge 2 case. Manufacturing the VVC thus re-
quires manipulating the polarization vector in a space-variant
manner, i.e., it needs to be significantly modulated across spatial
scales of less than a millimeter, with precisions of a few microns

6 Noteworthy progress was recently made in the scalar vortex technology,
here using computer generated holograms, see Errmann et al. (2013).
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Figure 6. Top: normalized off-axis companion throughput for the RAVC2
(charge l = 2) as a function of angular separation in λ/D units. Bottom:
normalized off-axis companion throughput for the RAVC4 (charge l = 4) as a
function of angular separation in λ/D units. The different curves are for different
obscuration ratios. We overplotted the θ l function, with the pointing offsets θ

in units of λ/D, representative of the VC sensitivity to low-order aberrations
(here tip-tilt) for θ � 1.

(A color version of this figure is available in the online journal.)

and fractions of a degree. Three technological approaches are
currently used to manufacture the VVC (Mawet et al. 2012):
liquid crystal polymers (Mawet et al. 2009), subwavelength
gratings (Mawet et al. 2005; Delacroix et al. 2013), and pho-
tonic crystals (Murakami et al. 2010, 2013). Each one of these
technological choices has advantages and drawbacks, enumer-
ated in Mawet et al. (2012), and practical vortex devices that
have already provided very high contrast with unobscured aper-
tures are already available (see Table 1). Thus, we now turn to
the manufacture of the new component needed, i.e., the ring
apodizer.

6.2. Apodizing Mask Manufacturing

Given the extreme simplicity of the ring-apodized masks and
their discrete levels of transmittance, no difficulty is foreseen
in this area. The manufacturing of the ring apodizer pupil mask
should thus be straightforward and one can envision using either
microdot or optical coating technologies.

Table 1
Characteristics of the Three Main Technologies

Currently Being Used to Render the VVC

Tech. λ l Cent. def. Raw Contrast

LCP VIS-NIR 2–4 <20 μm a �10−9 @ 785 nm
<5 μm b �2 10−8 10% BW

�4 10−8 20% BW
PC VIS(-NIR) 2 <1 μm c �10−8 @ 785 nm
SG (NIR-)MIR 2 <5 μm d �10−5 @ 4 μm e

Notes. LCP = liquid crystal polymer, SG = subwavelength gratings, PC =
photonic crystals. l is the topological charge of the vortex. NIR stands for near-
infrared. MIR stands for mid-infrared. “Cent. def.” is the size of the defect at
the center of the VVC.
a Manuf. by JDSU (Mawet et al. 2009, 2012), see also Serabyn et al. (2013).
b Manuf. by BeamCo (Nersisyan et al. 2013).
c Manuf. by Photonic Lattice Inc. (Murakami et al. 2010, 2013).
d Manuf. by Uppsala University (Delacroix et al. 2013).
e Without wavefront control.

The microdot technology uses a halftone-dot process, where
the relative density of a binary array of pixels (transmission of 0
or 1 at the micron level) is calculated to obtain the required local
transmission (here uniform within the rings). The manufacturing
of current APLC (Soummer 2005; Soummer et al. 2011) for
SPHERE (Kasper et al. 2012) and Gemini Planet Imager
(Macintosh et al. 2008) uses the microdot technology, which
is well mastered (Martinez et al. 2009a, 2009b). We note that
the band-limited coronagraphs of NIRCAM soon to fly on board
the James Webb Space Telescope have also made use of a similar
technique (Krist et al. 2009). The demonstrated advantages of
microdot apodizers are numerous: 1% level accuracy on the
transmission profile, achromatic in phase and amplitude, and
compatibility with a wide range of substrate material and with
conventional AR coating. Spatial phase distortions are absent in
principle (Martinez et al. 2009a, 2009b), but careful control will
be necessary for the RAVC. Indeed, the perfect superposition
of the fields originating from the central obscuration and the
ring(s) requires a uniform phase across the apodizer area.

Another potential technique could make use of optical coat-
ings. Trauger et al. (2012) developed a successful method to in-
duce a quasi-achromatic spatially variable optical density with
a combination of a deposited metal together with a dielectric
to cancel the induced phase shift. This technology has been
used to manufacture the band-limited coronagraph that currently
holds the contrast world record (Trauger et al. 2011), and spatial
transitions of the order of a few microns should be possible.

6.3. RAVC Layout

The RAVC layout is quite simple and only requires the
insertion of the apodizer at a pupil plane upstream of the
coronagraph (see Figure 1(b)). Provided that the pupil plane
can be shared with a potential deformable mirror (DM), or that
the DM can be slightly out of the pupil plane, no additional
stage is required (Mawet et al. 2011c). Such a configuration
allows implementation of the RAVC on existing ground-based
instruments with little additional effort as wheels with pupil
masks are available most of the time.

6.4. Strut Mitigation with ACAD

The analytical solutions presented above only deal with
a central on-axis obscuration. Large telescope apertures
rarely resemble uniform disks or annuli. Besides the central
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obscuration, they usually feature opaque areas produced, for ex-
ample, by their support structures or gaps between main mirror
segments. Following the superposition principle, such opaque
areas diffract light in the same way but with opposite phase.
The resulting point-spread function (PSF) structure produced
by opaque areas can be detrimental to high-contrast imaging,
and the total scattered flux is proportional to the size of the
obscured area.

Secondary mirror spiders produce extended spike-shaped
features, and the net-like gap structure of a segmented mirror
produces a regular speckle pattern with a pitch that is inversely
proportional to the segment pitch. An efficient diffraction
control system has to take aperture irregularities into account.
Conventional apodizers have been calculated for irregular aper-
tures (Carlotti et al. 2011) and are now optimized to deal
with phase mask coronagraphs (see Section 6.5 below; Carlotti
2013).

An interesting alternative to classical apodization techniques
is the upfront correction of aperture irregularities by optical
remapping in the geometric, and thus achromatic, regime. While
PIAA can remove central obscurations, Pueyo & Norman (2012)
presented a method (active correction of aperture discontinu-
ities, ACAD) to derive mirror shapes suitable to remove the
narrow structures introduced by spiders, gaps, and maybe even
missing segments. Because the required mirror deformations
are relatively small (of the order of a micron), DMs could be
used for this purpose.

Even without apodization or remapping, PSF structures
produced by gaps and spiders are typically less localized and
less affected by the coronagraphic mask. Therefore, they show
up mostly as bright structures of the original geometry in the
Lyot plane of an efficient coronagraph and can be masked to a
large extent by a suitable irregularly shaped Lyot stop. For larger
separations the fraction of the field of view spoiled by spiders
and gaps may be sufficiently small to ignore.

6.5. Strut Mitigation by Apodizer Optimization

If two DMs are available, ACAD can be used to mitigate
the diffraction effects due to the struts. However, if there is
only one DM available, or no DMs at all, then this task can be
given to a different type of apodizer specifically computed to
take these additional diffraction effects into account. Following
an idea first presented in Carlotti (2013), and then applied to
the case of the four-quadrant phase mask, the two-dimensional
transmission of amplitude apodizers can be maximized in a
numerical optimization problem where constraints are set on
the extremum values of the electric field in the Lyot plane.

An upcoming paper (Carlotti et al. 2013) presents charge 2
and charge 4 VC apodizers designed for several on-axis tele-
scopes with 10%–30% central obscurations and orthogonal spi-
ders. Interestingly, the overall morphology of these numerically
optimized solutions converges to the analytical RAVC design
for the ideal strut-less pupil, and departs from it only around
the struts where additional local apodization features are nec-
essary. The transmissions of these apodized coronagraphs are
also comparable to the transmissions of RAVC2 and RAVC4,
but can be smaller or larger depending mostly on the presence
of the secondary supports in the pupil and/or the finite radius
imposed on the vortex phase mask (currently limited to 32–64
λ/D because of the complexity of the computations). Similar to
other two-dimensional optimal apodizers, these masks have bi-
nary transmissions, and thus can also make use of the microdots
and coating technologies, as discussed in Section 6.2.

Another straightforward strut mitigation technique is the
spider removal plate, which removes the strut footprint by
translating the clear and contiguous parts of the pupil inward
with tilted plane-parallel plates (Lozi et al. 2009). However,
this solution is less ideal for very high contrast applications
since it introduces a thick prismatic optical element in the beam
upstream of the coronagraph, and with it, its share of chromatic
optical aberrations.

7. CONCLUSIONS: A GAME-CHANGING CONCEPT

The RAVC is a game-changing concept. It unambiguously
solves the last hurdle that the VC faced, namely, its sensitivity
to central obscuration. Contrary to previous solutions that relied
on multi-stage approaches (Mawet et al. 2011c) or complex
numerically optimized apodization solutions (Carlotti 2013),
the RAVC is a single stage approach with extremely simple
apodizer designs. The simplicity of the RAVC concept enables
fast track implementation.

The concept is particularly relevant to future extreme adaptive
optics instruments for ELT and coronagraphic space missions
employing on-axis telescopes, where central obscuration and the
desired use of topological charge 4 VC are additional constraints
that the RAVC family solves pragmatically. With a more limited
aperture in space, throughput loss might be an issue. However,
a forthcoming paper (L. Pueyo et al. 2013, in preparation) will
extend the RAVC concept to lossless apodization techniques,
which should mitigate this problem as well.

This work was carried out at the European Southern
Observatory (ESO) and at the Jet Propulsion Laboratory, Cali-
fornia Institute of Technology, under contract with the National
Aeronautics and Space Administration. This material is partially
based on work supported by NASA under grant NNX12AG05G
issued through the Astrophysics Research and Analysis (APRA)
program.
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