2,539 research outputs found

    Apodized phase mask coronagraphs for arbitrary apertures. II. Comprehensive review of solutions for the vortex coronagraph

    Get PDF
    With a clear circular aperture, the vortex coronagraph perfectly cancels an on-axis point source and offers a 0.9 or 1.75 lambda/D inner working angle for topological charge 2 or 4, respectively. Current and near-future large telescopes are on-axis, however, and the diffraction effects of the central obscuration, and the secondary supports are strong enough to prevent the detection of companions 1e-3 - 1e-5 as bright as, or fainter than, their host star. Recent advances show that a ring apodizer can restore the performance of this coronagraph by compensating for the diffraction effects of a circular central obscuration in a 1D modeling of the pupil. We extend this work and optimize apodizers for arbitrary apertures in 2D in order to tackle the diffraction effects of the spiders and other noncircular artefacts in the pupil. We use a numerical optimization scheme to compute hybrid coronagraph designs that combine the advantages of the vortex coronagraph (small in IWA) and of shaped pupils coronagraphs (robustness to central obscuration and pupil asymmetric structures). We maximize the apodizer transmission, while constraints are set on the extremum values of the electric field that is computed in chosen regions of the Lyot plane through closed form expressions. Optimal apodizers are computed for topological charges 2 and 4 vortex coronagraphs and for telescope apertures with 10-30% central obscurations and 0-1% thick spiders. We characterize the impacts of the obscuration ratio and the thickness of the spiders on the throughput and the IWA for the two topological charges.Comment: 23 pages, 12 figures, 2 table

    Apodized vortex coronagraph designs for segmented aperture telescopes

    Get PDF
    Current state-of-the-art high contrast imaging instruments take advantage of a number of elegant coronagraph designs to suppress starlight and image nearby faint objects, such as exoplanets and circumstellar disks. The ideal performance and complexity of the optical systems depends strongly on the shape of the telescope aperture. Unfortunately, large primary mirrors tend to be segmented and have various obstructions, which limit the performance of most conventional coronagraph designs. We present a new family of vortex coronagraphs with numerically-optimized gray-scale apodizers that provide the sensitivity needed to directly image faint exoplanets with large, segmented aperture telescopes, including the Thirty Meter Telescope (TMT) as well as potential next-generation space telescopes.Comment: To appear in SPIE proceedings vol. 991

    Ring-apodized vortex coronagraphs for obscured telescopes. I. Transmissive ring apodizers

    Get PDF
    The vortex coronagraph (VC) is a new generation small inner working angle (IWA) coronagraph currently offered on various 8-meter class ground-based telescopes. On these observing platforms, the current level of performance is not limited by the intrinsic properties of actual vortex devices, but by wavefront control residuals and incoherent background (e.g. thermal emission of the sky) or the light diffracted by the imprint of the secondary mirror and support structures on the telescope pupil. In the particular case of unfriendly apertures (mainly large central obscuration) when very high contrast is needed (e.g. direct imaging of older exoplanets with extremely large telescopes or space- based coronagraphs), a simple VC, as most coronagraphs, can not deliver its nominal performance because of the contamination due to the diffraction from the obscured part of the pupil. Here we propose a novel yet simple concept that circumvents this problem. We combine a vortex phase mask in the image plane of a high-contrast instrument with a single pupil-based amplitude ring apodizer, tailor designed to exploit the unique convolution properties of the VC at the Lyot-stop plane. We show that such a ring-apodized vortex coronagraph (RAVC) restores the perfect attenuation property of the VC regardless of the size of the central obscuration, and for any (even) topological charge of the vortex. More importantly the RAVC maintains the IWA and conserves a fairly high throughput, which are signature properties of the VC.Comment: 10 pages, 6 figure

    Kinetics of lime/bentonite pozzolanic reactions at 20 and 50 °C: Batch tests and modeling

    No full text
    International audienceThe effects of duration (1-100 days) and temperature (20 and 50 °C) were assessed from batch tests for Ca-bentonite mixed with 10 wt.% lime. The pozzolanic processes were monitored over time by 29Si NMR (Cement Concr. Res. 42, 2012), TGA-DTA, XRD and chemical analysis. Modeling considered kinetics and thermodynamics of mineralogical transformations and cation exchange. Kinetic laws were dependent on pH and temperature (Arrhenius energy). Lime hydration occurs within hours, modifying the bentonite exchangeable population and increasing the pH. These alkaline conditions initiate the pozzolanic reactions in a second stage. The rate-limiting step is the dissolution kinetics of the bentonite minerals, i.e. a relatively fast and total consumption of cristobalite in parallel to a long-term slower dissolution of montmorillonite. First C-S-H and then C-A-S-H are formed consequently. Temperature speeds up the pozzolanic reaction kinetics by a factor 5 from 20 to 50 °C, corresponding to an apparent activation energy of 40-50 kJ/mol

    The European Commission’s Activation of Article 7: Better Late than Never?

    Get PDF
    On Wednesday, the European Commission reacted to the continuing deterioration of the rule of law situation in Poland. The remaining question, of course, is why this argument has been used in the context of 7(1) as opposed of 7(2) given that the situation on the ground in Poland is clearly – in the view of the Commission, the Venice Commission and countless other actors – one of clear and persistent breach of values, as opposed to a threat thereof. The explanation might lie beyond the simple difficulty of the procedural requirements related to the sanctioning stage

    VLT/SPHERE robust astrometry of the HR8799 planets at milliarcsecond-level accuracy Orbital architecture analysis with PyAstrOFit

    Full text link
    HR8799 is orbited by at least four giant planets, making it a prime target for the recently commissioned Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT/SPHERE). As such, it was observed on five consecutive nights during the SPHERE science verification in December 2014. We aim to take full advantage of the SPHERE capabilities to derive accurate astrometric measurements based on H-band images acquired with the Infra-Red Dual-band Imaging and Spectroscopy (IRDIS) subsystem, and to explore the ultimate astrometric performance of SPHERE in this observing mode. We also aim to present a detailed analysis of the orbital parameters for the four planets. We report the astrometric positions for epoch 2014.93 with an accuracy down to 2.0 mas, mainly limited by the astrometric calibration of IRDIS. For each planet, we derive the posterior probability density functions for the six Keplerian elements and identify sets of highly probable orbits. For planet d, there is clear evidence for nonzero eccentricity (e0.35e \simeq 0.35), without completely excluding solutions with smaller eccentricities. The three other planets are consistent with circular orbits, although their probability distributions spread beyond e=0.2e = 0.2, and show a peak at e0.1e \simeq 0.1 for planet e. The four planets have consistent inclinations of about 30deg30\deg with respect to the sky plane, but the confidence intervals for the longitude of ascending node are disjoint for planets b and c, and we find tentative evidence for non-coplanarity between planets b and c at the 2σ2 \sigma level.Comment: 23 pages, 14 figure

    Resistive switching induced by electronic avalanche breakdown in GaTa4_4Se8x_{8-x}Tex_x narrow gap Mott Insulators

    Get PDF
    Mott transitions induced by strong electric fields are receiving a growing interest. Recent theoretical proposals have focused on the Zener dielectric breakdown in Mott insulators, however experimental studies are still too scarce to conclude about the mechanism. Here we report a study of the dielectric breakdown in the narrow gap Mott insulators GaTa4_4Se8x_{8-x}Tex_x. We find that the I-V characteristics and the magnitude of the threshold electric field (Eth_{th}) do not correspond to a Zener breakdown, but rather to an avalanche breakdown. Eth_{th} increases as a power law of the Mott Hubbard gap (Eg_g), in surprising agreement with the universal law Eth_{th} \proptoEg_g2.5^{2.5} reported for avalanche breakdown in semiconductors. However, the delay time for the avalanche that we observe in Mott insulators is over three orders of magnitude longer than in conventional semiconductors. Our results suggest that the electric field induces local insulator-to-metal Mott transitions that create conductive domains which grow to form filamentary paths across the sample

    Development of a new type of high pressure calorimetric cell, mechanically agitated and equipped with a dynamic pressure control system: Application to the characterization of gas hydrates

    Get PDF
    A novel prototype of calorimetric cell has been developed allowing experiments under pressure with an in situ agitation system and a dynamic control of the pressure inside the cell. The use of such a system opens a wide range of potential practical applications for determining properties of complex fluids in both pressurized and agitated conditions. The technical details of this prototype and its calibration procedure are described, and an application devoted to the determination of phase equilibrium and phase change enthalpy of gas hydrates is presented. Our results, obtained with a good precision and reproducibility, were found in fairly good agreement with those found in literature, illustrate the various interests to use this novel apparatu
    corecore