40 research outputs found

    Functional Characterization of Neurotensin Receptors in Human Cutaneous T Cell Lymphoma Malignant Lymphocytes

    Get PDF
    Cutaneous T cell lymphomas are a clonal proliferation of CD4+ T lymphocytes primarily involving the skin. Mycosis fungoides is an epidermotropic CD4+ cutaneous T cell lymphoma, and a more aggressive form, Sezary syndrome, occurs when the malignant cells become nonepidermotropic. The role of neuropeptides in the growth and chemotaxis capacity of cutaneous T cell lymphoma cells remains unknown. In this report, we found that cutaneous T cell lymphoma cells, similarly to normal resting or activated peripheral lymphocytes, were able to bind neurotensin. We used an interleukin-2-dependent cutaneous T cell lymphoma malignant T cell line derived from cutaneous T cell lymphoma lesions in order to study the role of neurotensin in the proliferation and migration of these malignant cells. First, we determined that the malignant cells expressed neurotensin receptors on their cell membrane. Functional results indicated that neurotensin did not stimulate the growth of the cell line. In contrast, this neuropeptide inhibited the proliferation of the tumor cells in response to exogenous interleukin-2. Furthermore, we found that neurotensin enhanced both spontaneous and chemoattractant-induced migration of the malignant cells. This suggests that neurotensin in skin can play a role in the disease by locally limiting the growth of the cutaneous T cell lymphoma tumor cells in response to cytokines and by enhancing their chemotaxis capacity

    Antitumour effects of single or combined monoclonal antibodies directed against membrane antigens expressed by human B cells leukaemia

    Get PDF
    Background: The increasing availability of different monoclonal antibodies (mAbs) opens the way to more specific biologic therapy of cancer patients. However, despite the significant success of therapy in breast and ovarian carcinomas with anti-HER2 mAbs as well as in non-Hodkin B cell lymphomas with anti-CD20 mAbs, certain B cell malignancies such as B chronic lymphocytic leukaemia (B-CLL) respond poorly to anti-CD20 mAb, due to the low surface expression of this molecule. Thus, new mAbs adapted to each types of tumour will help to develop personalised mAb treatment. To this aim, we analyse the biological and therapeutic properties of three mAbs directed against the CD5, CD71 or HLA-DR molecules highly expressed on B-CLL cells. Results: The three mAbs, after purification and radiolabelling demonstrated high and specific binding capacity to various human leukaemia target cells. Further in vitro analysis showed that mAb anti-CD5 induced neither growth inhibition nor apoptosis, mAb anti-CD71 induced proliferation inhibition with no early sign of cell death and mAb anti-HLA-DR induced specific cell aggregation, but without evidence of apoptosis. All three mAbs induced various degrees of ADCC by NK cells, as well as phagocytosis by macrophages. Only the anti-HLA-DR mAb induced complement mediated lysis. Coincubation of different pairs of mAbs did not significantly modify the in vitro results. In contrast with these discrete and heterogeneous in vitro effects, in vivo the three mAbs demonstrated marked anti-tumour efficacy and prolongation of mice survival in two models of SCID mice, grafted either intraperitoneally or intravenously with the CD5 transfected JOK1-5.3 cells. This cell line was derived from a human hairy cell leukaemia, a type of malignancy known to have very similar biological properties as the B-CLL, whose cells constitutively express CD5. Interestingly, the combined injection of anti-CD5 with anti-HLA-DR or with anti-CD71 led to longer mouse survival, as compared to single mAb injection, up to complete inhibition of tumour growth in 100% mice treated with both anti-HLA-DR and anti-CD5. Conclusions: Altogether these data suggest that the combined use of two mAbs, such as anti-HLA-DR and anti-CD5, may significantly enhance their therapeutic potential

    EFFETS DE CD100, UNE SEMAPHORINE LEUCOCYTAIRE, SUR LA DIFFERENCIATION ET LA MIGRATION DES CELLULES IMMUNES

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Functional Inhibitory Receptors Expressed by a Cutaneous T Cell Lymphoma-Specific Cytolytic Clonal T Cell Population

    Get PDF
    Inhibitory receptors on natural killer cells and on a minority of T lymphocytes are major histocompatibility complex class Ia or Ib specific. We have previously reported several tumor-specific cytotoxic T cell clones infiltrating a CD4+ Vβ13+ cutaneous T cell lymphoma. These clones mediated a specific major histocompatibility complex class I-restricted cytotoxic activity toward the uncultured tumor cells and autologous long-term tumor T cell lines. In this study, we cultured with interleukin-2 the peripheral blood lymphocytes of the same patient a few weeks before invasion of the blood by tumor cells. We report the rapid and selective expansion of a CD8+ Vβ13+ lymphoid population. This population was clonal, as it expressed a unique T cell receptor-Vβ junctional region. Vβ13+ tumor cells and Vβ13+ reactive T cells were shown to have different junctional sequences. The CD8+ reactive clone was functional, as it had a specific autologous tumor-specific, human leukocyte antigen-A2 restricted, cytotoxic activity. This clone coexpressed high levels of CD158a, CD158b, p70, and CD94/NKG2A inhibitory receptors. Interestingly, we found that anti-CD158a and anti-CD158b monoclonal antibodies could inhibit anti-CD3 redirected cytotoxicity mediated by the reactive clonal population. Further, an anti-human leukocyte antigen-B/C monoclonal antibody enhanced the specific cytotoxic activity of the clone against autologous tumor cells. These results are the first evidence that inhibitory receptor expression can lead to the inhibition of cutaneous T cell lymphoma-specific T cell responses
    corecore