11 research outputs found

    Acipenser iridovirus?European encodes a replication factor C (RFC)sub?unit

    No full text
    AbstractNew genomic sequence data were acquired for the Acipenser iridovirus-European (AcIV-E), a virus whose complete genomeand classification still remain to be elucidated. Here, we obtained the first full-length Major capsid protein (MCP) genesequence for AcIV-E, as well as two additional open reading frames (ORFs) adjacent to the MCP gene. BLAST searchesof the first ORF (?) resulted in no match to any gene or protein in the public databases. The other ORF (?) was identifiedas a subunit of a replication factor C (RFC), known to function as a clamp loader in eukaryotes, archae and some viruses.The presence of similar RFC genes was confirmed in two distinct, yet related, viruses, the white sturgeon iridovirus anda European variant of Namao virus. The existence of an RFC gene in AcIV-E suggests a genome size larger than that ofother classifiable members of the family Iridoviridae along with a mode of replication involving an interaction between aclamp loader and a proliferating nuclear cell antigen. Sequencing and comparison of the full-length RFC gene from varioussturgeon samples infected with AcIV-E revealed two distinct clusters of sequences within one particular sample in whichthe coexistence of two lineages had previously been predicted based on analysis of the partial MCP gene sequence. Thesegenetic data provide further evidence of the circulation of at least two concurrent AcIV-E lineages, sometimes co-infectingcultured European sturgeon

    Revised Taxonomy of Rhabdoviruses Infecting Fish and Marine Mammals

    No full text
    International audienceThe Rhabdoviridae is a large family of negative-sense (-) RNA viruses that includes important pathogens of ray-finned fish and marine mammals. As for all viruses, the taxonomic assignment of rhabdoviruses occurs through a process implemented by the International Committee on Taxonomy of Viruses (ICTV). A recent revision of taxonomy conducted in conjunction with the ICTV Rhabdoviridae Study Group has resulted in the establishment of three new subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae) within the Rhabdoviridae, as well as three new genera (Cetarhavirus, Siniperhavirus, and Scophrhavirus) and seven new species for viruses infecting fish or marine mammals. All rhabdovirus species have also now been named or renamed to comply with the binomial format adopted by the ICTV in 2021, comprising the genus name followed by a species epithet. Phylogenetic analyses of L protein (RNA-dependent RNA polymerase) sequences of (-) RNA viruses indicate that members of the genus Novirhabdovirus (subfamily Gammarhabdovirinae) do not cluster within the Rhabdoviridae, suggesting the need for a review of their current classification

    A New Lineage of Perch Rhabdovirus Associated with Mortalities of Farmed Perch

    No full text
    The new genetic data are available in GenBank (MW68582)International audienceA perhabdovirus was isolated from a mortality episode affecting a fish farm in 2019 in Western Europe. This virus was produced in cell culture and was readily detected by a species-specific real-time PCR assay. The near-complete sequence of the virus obtained showed some relatedness with viruses of the species Perhabdovirus perca. However, it was distinct enough from these viruses to form a separate genetic lineage. Multiple substitutions along the genome caused non-detection using a range of conventional PCRs previously shown to target four known genogroups of perhabdoviruses. However, various generic PCRs efficiently detected the isolated virus. The origin of this virus remains to be elucidated. It may have been introduced into the farm via wild genitors. This finding provides new evidence of the high genetic diversity of percid perhabdoviruses and the potential of new genotypes to emerge as threats for fish farming. Efforts to improve the existing diagnostic methods and control this large group of viruses are still needed

    Further spread of perch rhabdovirus on European percid farms.

    No full text
    Variants of perch rhabdovirus (PRV) circulate across European percid farms via the fish trade. To trace their circulation, they are usually isolated by cell culture and subsequently identified genetically by sequencing partial or complete genes. Here, a newly developed nested PCR-based method was used to amplify and sequence the complete N and P genes directly from clinical samples obtained during an outbreak on a farm as well as from four batches of fish sampled from two other farms in another country. In an attempt to trace the origin of the five detected viruses, their N and P sequences were concatenated and compared with related viruses. One virus found in pike-perch was highly related to a virus isolated in 2016 in Belgium. Two other viruses detected on a single farm were distinct from one another, with one being almost identical to another virus isolated in 2016 in Belgium and the other being more closely related to a subgroup with different origins, France and Belgium. Two other viruses found in perch from a third farm were identical and were more related to a subgroup of viruses isolated in France. Identifying variants by a direct PCR approach will help to prevent further dissemination in farms

    Pathotyping of Vibrio Isolates by Multiplex PCR Reveals a Risk of Virulent Strain Spreading in New Caledonian Shrimp Farms

    No full text
    International audienceTwo recurring syndromes threaten the viability of the shrimp industry in New Caledonia, which represents the second largest export business. The "Syndrome 93" is a cold season disease due to Vibrio penaeicida affecting all shrimp farms, while the "Summer Syndrome" is a geographically restricted vibriosis caused by a virulent lineage of Vibrio nigripulchritudo. Microbiological procedures for diagnosis of these diseases are time-consuming and do not have the ability to discriminate the range of virulence potentials of V. nigripulchritudo. In this study, we developed a multiplex PCR method to simultaneously detect these two bacterial species and allow for pathotype discrimination. The detection limits of this assay, that includes an internal amplification control to eliminate any false-negative results, were determined at 10 pg purified DNA and 200 cfu/ml. After confirming the effectiveness of our method using experimentally infected animals, its accuracy was compared to standard biochemical methods during a field survey using 94 samples collected over 3 years from shrimp farms encountering mortality events. The multiplex PCR showed very high specificity for the detection of V. penaeicida and V. nigripulchritudo (inclusivity and exclusivity 100%) and allowed us to detect the spreading of highly pathogenic isolates of V. nigripulchritudo to a farm adjoining the "Summer Syndrome area." This assay represents a simple, rapid, and cost-effective diagnostic tool for implementing timely risk management decisions but also understanding the seasonal and geographical distribution of these pathogens

    Revisiting the Classification of Percid Perhabdoviruses Using New Full-Length Genomes

    No full text
    International audiencePerhabdoviruses are a threat to some freshwater fish species raised in aquaculture farms in Europe. Although the genetic diversity of these viruses is suspected to be high, the classification of isolates is still in its infancy, with just one full-length genome available and only partial sequences for a limited number of others. Here, we characterized a series of viruses isolated from percids in France from 1999 to 2009 by sequencing the nucleoprotein (N) gene. Four main clusters were distinguished, all related at varying levels of similarity to one of the two already-recognized species, namely Perch perhabdovirus and Sea trout perhabdovirus. Furthermore, we obtained the complete genome of five isolates, including one belonging to Sea trout rhabdovirus. The analysis of the complete L genes and the concatenated open reading frames confirmed the existence of four main genetic clusters, sharing 69 to 74% similarity. We propose the assignation of all these viral isolates into four species, including two new ones: Perch perhabdovirus 1, Perch perhabdovirus 2, Sea trout perhabdovirus 1 and Sea trout perhabdovirus 2. In addition, we developed new primers to readily amplify specific portions of the N gene of any isolate of each species by conventional PCR. The presence of such genetically diverse viruses in France is likely due to divergent viral populations maintained in the wild and then introduced to experimental facilities or farms, as well as via trade between farms across the European continent. It is now urgent to improve the identification tools for this large group of viruses to prevent their unchecked dissemination

    2022 taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales

    No full text
    In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV
    corecore