49 research outputs found

    Sulforaphane Modulates AQP8-Linked Redox Signalling in Leukemia Cells

    Get PDF
    Sulforaphane, a biologically active isothiocyanate compound extracted from cruciferous vegetables, has been shown to exert cytotoxic effects on many human cancer cells, including leukemia. However, the exact molecular mechanisms behind the action of sulforaphane in hematological malignancies are still unclear. Like other cancer cells, leukemia cells produce high level of reactive oxygen species; in particular, hydrogen peroxide derived from Nox family is involved in various redox signal transduction pathways, promoting cell proliferation and survival. Recent evidence show that many tumour cell types express elevated level of aquaporin isoforms, and we previously demonstrated that aquaporin-8 acts as H2O2 transport facilitator across the plasma membrane of B1647 cells, a model of acute myeloid human leukemia. Thus, the control of AQP8-mediated H2O2 transport could be a novel strategy to regulate cell signalling and survival. To this purpose, we evaluated whether sulforaphane could somehow affect aquaporin-8-mediated H2O2 transport and/or Nox-mediated H2O2 production in B1647 cell line. Results indicated that sulforaphane inhibited both aquaporin-8 and Nox2 expression, thus decreasing B1647 cells viability. Moreover, the data obtained by coimmunoprecipitation technique demonstrated that these two proteins are linked to each other; thus, sulforaphane has an important role in modulating the downstream events triggered by the axis Nox2-aquaporin-8. Cell treatment with sulforaphane also reduced the expression of peroxiredoxin-1, which is increased in almost all acute myeloid leukemia subtypes. Interestingly, sulforaphane concentrations able to trigger these effects are achievable by dietary intake of cruciferous vegetables, confirming the importance of the beneficial effect of a diet rich in bioactive compounds

    Role of Plasma Membrane Caveolae/Lipid Rafts in VEGF-Induced Redox Signaling in Human Leukemia Cells

    Get PDF
    Caveolae/lipid rafts are membrane-rich cholesterol domains endowed with several functions in signal transduction and caveolin-1 (Cav-1) has been reported to be implicated in regulating multiple cancer-associated processes, ranging from tumor growth to multidrug resistance and angiogenesis. Vascular endothelial growth factor receptor-2 (VEGFR-2) and Cav-1 are frequently colocalized, suggesting an important role played by this interaction on cancer cell survival and proliferation. Thus, our attention was directed to a leukemia cell line (B1647) that constitutively produces VEGF and expresses the tyrosine-kinase receptor VEGFR-2. We investigated the presence of VEGFR-2 in caveolae/lipid rafts, focusing on the correlation between reactive oxygen species (ROS) production and glucose transport modulation induced by VEGF, peculiar features of tumor proliferation. In order to better understand the involvement of VEGF/VEGFR-2 in the redox signal transduction, we evaluated the effect of different compounds able to inhibit VEGF interaction with its receptor by different mechanisms, corroborating the obtained results by immunoprecipitation and fluorescence techniques. Results here reported showed that, in B1647 leukemia cells, VEGFR-2 is present in caveolae through association with Cav-1, demonstrating that caveolae/lipid rafts act as platforms for negative modulation of VEGF redox signal transduction cascades leading to glucose uptake and cell proliferation, suggesting therefore novel potential targets

    Role of methylglyoxal in Alzheimer's disease

    No full text
    Alzheimer's disease is the most common and lethal neurodegenerative disorder. The major hallmarks of Alzheimer's disease are extracellular aggregation of amyloid β peptides and, the presence of intracellular neurofibrillary tangles formed by precipitation/aggregation of hyperphosphorylated tau protein. The etiology of Alzheimer's disease is multifactorial and a full understanding of its pathogenesis remains elusive. Some years ago, it has been suggested that glycation may contribute to both extensive protein cross-linking and oxidative stress in Alzheimer's disease. Glycation is an endogenous process that leads to the production of a class of compounds known as advanced glycation end products (AGEs). Interestingly, increased levels of AGEs have been observed in brains of Alzheimer's disease patients. Methylglyoxal, a reactive intermediate of cellular metabolism, is the most potent precursor of AGEs and is strictly correlated with an increase of oxidative stress in Alzheimer's disease. Many studies are showing that methylglyoxal and methylglyoxal-derived AGEs play a key role in the etiopathogenesis of Alzheimer's disease

    Role of Methylglyoxal in Alzheimer’s Disease

    No full text
    Alzheimer's disease is the most common and lethal neurodegenerative disorder. The major hallmarks of Alzheimer's disease are extracellular aggregation of amyloid β peptides and, the presence of intracellular neurofibrillary tangles formed by precipitation/aggregation of hyperphosphorylated tau protein. The etiology of Alzheimer's disease is multifactorial and a full understanding of its pathogenesis remains elusive. Some years ago, it has been suggested that glycation may contribute to both extensive protein cross-linking and oxidative stress in Alzheimer's disease. Glycation is an endogenous process that leads to the production of a class of compounds known as advanced glycation end products (AGEs). Interestingly, increased levels of AGEs have been observed in brains of Alzheimer's disease patients. Methylglyoxal, a reactive intermediate of cellular metabolism, is the most potent precursor of AGEs and is strictly correlated with an increase of oxidative stress in Alzheimer's disease. Many studies are showing that methylglyoxal and methylglyoxal-derived AGEs play a key role in the etiopathogenesis of Alzheimer's disease

    Signal processes and RGS production in glucose transport regulation by thrombopoietin and granulocyte macrophage-colony stimulation factor in a human leukaemic cell line

    No full text
    In M07e cells, a human megakaryocytic leukaemia line, reactive oxygen species (ROS) are generated in response to cytokines acting as intracellular messengers to modulate glucose transport. The aim of this work was to study the signal cascade involved in the acute glucose transport activation in cells exposed to growth factors, such as granulocyte macrophage-colony stimulation factor (GM-CSF) and thrombopoietin (TPO), to better understand some aspects of the aberrant proliferation in leukaemia. Results confirm ROS involvement in modulation of glucose transport in this cell line. Furthermore, GM-CSF and TPO produced changes in Glut1 phosphorylation and specific inhibitors employed to identify protein kinases involved in Glut activation by these cytokines proved that Akt, PLC gamma, Syk and the Src family take part in signal transduction leading to Glut1 activation

    Polyphenols as Modulators of Aquaporin Family in Health and Disease

    Get PDF
    Polyphenols are bioactive molecules widely distributed in fruits, vegetables, cereals, and beverages. Polyphenols in food sources are extensively studied for their role in the maintenance of human health and in the protection against development of chronic/degenerative diseases. Polyphenols act mainly as antioxidant molecules, protecting cell constituents against oxidative damage. The enormous number of polyphenolic compounds leads to huge different mechanisms of action not fully understood. Recently, some evidence is emerging about the role of polyphenols, such as curcumin, pinocembrin, resveratrol, and quercetin, in modulating the activity of some aquaporin (AQP) isoforms. AQPs are integral, small hydrophobic water channel proteins, extensively expressed in many organs and tissues, whose major function is to facilitate the transport of water or glycerol over cell plasma membranes. Here we summarize AQP physiological functions and report emerging evidence on the implication of these proteins in a number of pathophysiological processes. In particular, this review offers an overview about the role of AQPs in brain, eye, skin diseases, and metabolic syndrome, focusing on the ability of polyphenols to modulate AQP expression. This original analysis can contribute to elucidating some peculiar effects exerted by polyphenols and can lead to the development of an innovative potential preventive/therapeutic strategy

    Dietary Phenolic Acids Act as Effective Antioxidants in Membrane Models and in Cultured Cells, Exhibiting Proapoptotic Effects in Leukaemia Cells

    Get PDF
    Caffeic, syringic, and protocatechuic acids are phenolic acids derived directly from food intake or come from the gut metabolism of polyphenols. In this study, the antioxidant activity of these compounds was at first evaluated in membrane models, where caffeic acid behaved as a very effective chain-breaking antioxidant, whereas syringic and protocatechuic acids were only retardants of lipid peroxidation. However, all three compounds acted as good scavengers of reactive species in cultured cells subjected to exogenous oxidative stress produced by low level of H2O2. Many tumour cells are characterised by increased ROS levels compared with their noncancerous counterparts. Therefore, we investigated whether phenolic acids, at low concentrations, comparable to those present in human plasma, were able to decrease basal reactive species. Results show that phenolic acids reduced ROS in a leukaemia cell line (HEL), whereas no effect was observed in normal cells, such as HUVEC. The compounds exhibited no toxicity to normal cells while they decreased proliferation in leukaemia cells, inducing apoptosis. In the debate on optimal ROS-manipulating strategies in cancer therapy, our work in leukaemia cells supports the antioxidant ROS-depleting approach
    corecore