267 research outputs found

    Walkability around primary schools and area deprivation across Scotland

    Get PDF
    Background: A number of studies based in the US, Canada, and Australia, have found evidence of associations between the built environment (BE) and mode of transport to school, and links between active travel and deprivation. Limited research in the UK compares potential BE supports for walking to school by area deprivation. Within this study, we gathered data on BE attributes previously linked to active travel, i.e., street/path connectivity, and dwelling density, created a composite ‘walkability score’ (WS) for areas around primary schools across urban Scotland, and explored whether poorer areas exhibit lower scores than more affluent areas, or vice versa. We consider this to be a novel approach as few studies have compared BE features by deprivation across a whole country. Methods: Address and road/path maps were obtained and primary schools (N = 937) across mainland Scotland were mapped. Schools were attributed income deprivation scores (scores divided into quintiles (Q1: least deprived, Q5: most deprived)). Catchment area (CA) boundaries, i.e., the geographic area representing eligibility for local school attendance, were drawn around schools, and WS calculated for each CA. We compared mean WS by income quintile (ANOVA), for all local authorities (LAs) combined (N = 29), and separately for the four LAs with the greatest number of schools included in the analysis. Results: For all LAs combined, the least deprived quintile (Q1) showed a significantly lower WS (−0.61), than quintiles 3, 4 and 5 (Q2: −0.04 (non-sig), Q3: 0.38, Q4: 0.09, Q5: 0.18); while for Glasgow the second least deprived quintile (Q2) showed significantly higher WS (Q1: 1.35, Q2: 1.73), than middling (Q3: 0.18) and most deprived quintiles (Q4: 0.06, Q5: −0.10). Conclusion: WS differ by deprivation with patterns varying depending on the spatial scale of the analysis. It is essential that less walkable areas are provided with the resources to improve opportunities to engage in active travel

    Uranium silicate complexes as models for surface immobilised uranium catalysts

    Get PDF
    Chapter 1 provides an insight into the current areas of research that could provide answers to the global energy problems outlined in Appendix A, namely the reductive functionalisation of carbon oxides and as an extension to this, the activation of other small molecules. The review predominantly concentrates on the chemistry of the 5f elements which already contain examples of reductive functionalisation of carbon oxides, albeit in homogeneous phase. In addition the chapter provides an overview of the current research in surface science and by extension, the development of molecular models that mimic such surfaces. This synopsis provides an insight into the difficulties involved in this area of research and why molecular mimics are of vital importance. Using ligating Si-O bonds to mimic a silica surface, Chapter 2 outlines the research which enabled the development of a series of uranium siloxides, centred on the previously unreported pentakis(triarylsiloxy) uranate(IV) ion. Characterisation data and full analysis are included within this chapter which provided the basis for the investigations discussed in the following chapters. This chapter also presents an interesting UV-Vis analysis of the uranium siloxides which will enable a wider understanding of the f -elements and the role f -orbitals have on the chemistry and geometry of f -element molecules. Chapter 2 develops a deeper understanding of these complexes by investigating the mechanisms of formation and the chemistry of the U(Ph3SiO)5 fragment using ESI techniques in conjunction with NMR analysis. Chapter 3 investigates the reactivities of the uranium siloxides previously developed and discusses a new dioxo species and a rare and novel UV monooxo complex which was synthesised and successfully isolated. An analysis of other dioxo and monooxo complexes is included which allows the reader to develop an appreciation of how few and far between monooxo products are. In addition, previous examples of monooxo’s are lacking characterisation data and are mostly products of oxygen atom donor reactions, not as a result of small molecule activation as is presented here. There is currently one previous example of such a system resulting from small molecule activation which is also discussed in this chapter. Chapter 4 investigates a second ligand system which could be used to mimic a silica surface. Whilst the ligand, tris tertbutoxy has been investigated previously, at the time of this work, the ligand had not been successfully used in relation to a uranium complex. The U3.5 species, [(U(OSi(OtBu)3)3)2(μ-η6:η6-tol))] is presented here alongside the complexes [((tBuO)3SiO)3U]2(μ2-O)3 and U(OSi(OtBu)3)4. During the development of this species, very similar species were published by another group and these syntheses and characterisation data are presented here as a comparison to the species developed as part of this work. Chapter 5 investigates the reactivities of the uranium siloxides developed in Chapter 4 including decomposition analysis and reactions with small molecules such as O2, I2 and CO2 and presents the resulting complexes some of which were developed by a Masters student working in collaboration with the author

    Retrieval of hundreds of nuclear loci from herbarium specimens

    Get PDF

    Active commute to school: does distance from school or walkability of the home neighbourhood matter? A national cross-sectional study of children aged 10–11 years, Scotland, UK

    Get PDF
    Objectives: To study the extent to which home-to-school distance and neighbourhood walkability were associated with self-reported active travel to school (ATS) (eg, walking, cycling), and to explore how distance moderates the effect of walkability on ATS, among 10–11 years old. Design: Cross-sectional study. Setting: Data were collected between May 2015 and May 2016 in partnership with the Growing Up in Scotland Study, a nationally representative longitudinal cohort study. Participants: 713 children (male (n=330) and female (n=383) 10–11 years old) from Studying Physical Activity in Children’s Environments across Scotland. Primary and secondary outcome measures: Children who actively travelled to/from school categorised as active all (100% of ATS) and active 60%+ (at least 60% of ATS); home-to-school road/path network distance (<0.5 km, 0.5 to <1 km, 1 to <1.5 km, 1.5 to <2 km, 2 km+); home neighbourhood walkability (i.e., composite measure of road/path intersection density and dwelling density) (in quintiles). Results: Distance and walkability were both associated with ATS. The likelihood of ATS for all or most journeys decreased with increasing distance. Compared with ‘most’ walkable areas (Q1), the odds of active all were significantly lower within least walkable areas (Q5 OR 0.45, 95% CI 0.21 to 0.99), and odds of active 60%+ were significantly less in Q2–Q5 (lowest odds Q5 OR 0.20, 95% CI 0.07 to 0.47). Regarding walkability and distance interactions, for all distance categories, higher walkability increased the probability of ATS (for most school journeys). Conclusion: Walkability was positively associated with ATS within all distance categories, with the relationship between walkability and ATS more complex than the clear-cut association between distance and ATS. A more walkable environment had a larger effect on the probability of reaching the 60% threshold of school journeys using ATS than the probability of always travelling in an active manner. Investment is needed in existing less walkable neighbourhoods to provide infrastructure to support opportunities for children’s ATS

    Affinity Capillary Electrochromatography of Molecularly Imprinted Thin Layers Grafted onto Silica Capillaries Using a Surface-Bound Azo-Initiator and Living Polymerization

    Get PDF
    Molecularly imprinted thin layers were prepared in silica capillaries by using two different surface polymerization strategies, the first using 4,4′-azobis(4-cyanovaleric acid) as a surface-coupled radical initiator, and the second, S-carboxypropyl-S’-benzyltrithiocarbonate as a reversible addition-fragmentation chain transfer (RAFT) agent in combination with 2,2′-azobisisobutyronitrile as a free radical initiator. The ability to generate imprinted thin layers was tested on two different polymerization systems: (i) a 4-vinylpyridine/ethylene dimethacrylate (4VP-EDMA) in methanol-water solution with 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as a template; and (ii) methacrylic acid/ethylene dimethacrylate (MAA-EDMA) in a chloroform solution with warfarin as the template molecule. The binding properties of the imprinted capillaries were studied and compared with those of the corresponding non-imprinted polymer coated capillaries by injecting the template molecule and by measuring its migration times relative to a neutral and non-retained marker. The role of running buffer hydrophobicity on recognition was investigated by studying the influence of varying buffer acetonitrile concentration. The 2,4,5-T-imprinted capillary showed molecular recognition based on a reversed phase mechanism, with a decrease of the template recognition in the presence of higher acetonitrile content; whereas warfarin-imprinted capillaries showed a bell-shaped trend upon varying the acetonitrile percentage, illustrating different mechanisms underlying imprinted polymer-ligand recognition. Importantly, the results demonstrated the validity of affinity capillary electrochromatography (CEC) to screen the binding properties of imprinted layers

    The impact of built environment change on all-cause and cause specific mortality: a novel longitudinal method and study

    Get PDF
    Background: Public health research increasingly acknowledges the influence of built environments (BE) on health; however, it is uncertain how BE change is associated with better population health and whether BE change can help narrow health inequalities. This knowledge gap is partly due to a lack of suitable longitudinal BE data in most countries. We devised a method to quantify BE change longitudinally and explored associations with mortality. The method is replicable in any nation that captures BE vector map data. Methods: Ordnance Survey data were used to categorise small areas as having no change, loss or gain, in buildings, roads, and woodland between 2015 and 2019. We examined individual mortality records for 2012–2015 and 2016–2019, using negative binomial regression to explore associations between BE change and all-cause and cause-specific mortality, adjusting for income deprivation. Results: BE change varied significantly by deprivation and urbanicity. Change in the BE and change in mortality were not related, however, areas that went on to experience BE change had different baseline mortality rates compared with those that did not. For example, areas that gained infrastructure already had lower mortality rates. Conclusion: We provide new methodology to quantify BE change over time across a nation. Findings provide insight into the health of areas that do/do not experience change, prompting critical perspectives on cross-sectional studies of associations between BE and health. Methods and findings applied internationally could explore the context of BE change and its potential to improve health in areas most in need beyond the UK

    The regulation of miRNAs by reconstituted high-density lipoproteins in diabetes-impaired angiogenesis

    Get PDF
    Diabetic vascular complications are associated with impaired ischaemia-driven angiogenesis. We recently found that reconstituted high-density lipoproteins (rHDL) rescue diabetes-impaired angiogenesis. microRNAs (miRNAs) regulate angiogenesis and are transported within HDL to sites of injury/repair. The role of miRNAs in the rescue of diabetes-impaired angiogenesis by rHDL is unknown. Using a miRNA array, we found that rHDL inhibits hsa-miR-181c-5p expression in vitro and using a hsa-miR-181c-5p mimic and antimiR identify a novel anti-angiogenic role for miR-181c-5p. miRNA expression was tracked over time post-hindlimb ischaemic induction in diabetic mice. Early post-ischaemia when angiogenesis is important, rHDL suppressed hindlimb mmu-miR-181c-5p. mmu-miR-181c-5p was not detected in the plasma or within HDL, suggesting rHDL specifically targets mmu-miR-181c-5p at the ischaemic site. Three known angiogenic miRNAs (mmu-miR-223-3p, mmu-miR-27b-3p, mmu-miR-92a-3p) were elevated in the HDL fraction of diabetic rHDL-infused mice early post-ischaemia. This was accompanied by a decrease in plasma levels. Only mmu-miR-223-3p levels were elevated in the hindlimb 3 days post-ischaemia, indicating that rHDL regulates mmu-miR-223-3p in a time-dependent and site-specific manner. The early regulation of miRNAs, particularly miR-181c-5p, may underpin the rescue of diabetes-impaired angiogenesis by rHDL and has implications for the treatment of diabetes-related vascular complications
    corecore