5 research outputs found

    Multilayer myocardial strain improves the diagnosis of heart failure with preserved ejection fraction

    Get PDF
    Aims: The diagnostic and treatment of patients with heart failure with preserved ejection fraction (HFpEF) are both hampered by an incomplete understanding of the pathophysiology of the disease. Novel imaging tools to adequately identify these patients from individuals with a normal cardiac function and respectively patients with HF with reduced EF are warranted. Computing multilayer myocardial strain with feature tracking is a fast and accurate method to assess cardiac deformation. Our purpose was to assess the HFpEF diagnostic ability of multilayer strain parameters and compare their sensitivity and specificity with other established parameters. Methods and results: We included 20 patients with a diagnosis of HFpEF and, respectively, 20 matched controls. We assessed using feature-tracking cardiac magnetic resonance longitudinal and circumferential myocardial strain at three distinct layers of the myocardium: subendocardial (Endo-), mid-myocardial (Myo-), and subepicardial (Epi-). Comparatively, we additionally assessed various others clinical, imaging, and biochemical parameters with a putative role in HFpEF diagnostic: left ventricular end-diastolic volume (LVEDV), left ventricular mass (LVM), interventricular septum (IVS) wall thickness and free wall thickness, left atrial volume and strain, septal and lateral mitral annular early diastolic velocity (e`), E/e' ratio, and plasma levels of N-terminal pro-B-type natriuretic peptide (NT-proBNP). Global longitudinal strain (GLS) is significantly impaired at Endo (-20.8 ± 4.0 vs. -23.2 ± 3.4,P = 0.046), Myo- (-18.0 ± 3.0 vs. -21.0 ± 2.5,P = 0.002), and Epi- (-12.2 ± 2.0 vs. -16.2 ± 2.5,P < 0.001) levels. Compared with any other imaging parameter, an Epi-GLS lower than 13% shows the highest ability to detect patients with HFpEF [area under the curve (AUC) = 0.90 (0.81-1),P < 0.001] and in tandem with NT-proBNP can diagnose with maximal sensibility (93%) and specificity (100%), patients with HFpEF from normal, composed variable [AUC = 0.98 (0.95-1),P < 0.001]. In a logistic regression model, a composite predictive variable taking into account both GLS Epi and NT-proBNP values in each individual subject reached a sensitivity of 89% and a specificity of 100% with an AUC of 0.98 (0.95-1),P < 0.001, to detect HFpEF. Conclusions: Epi-GLS is a promising new imaging parameter to be considered in the clinical assessment of HFpEF patients. Given its excellent specificity, in tandem with a highly sensitive parameter such as NT-proBNP, Epi-GLS holds the potential to greatly improve the current diagnostic algorithms

    Myocardial deformation assessed among heart failure entities by cardiovascular magnetic resonance imaging

    Get PDF
    Aims: Although heart failure (HF) is a leading cause for hospitalization and mortality, normalized and comparable non-invasive assessment of haemodynamics and myocardial action remains limited. Moreover, myocardial deformation has not been compared between the guideline-defined HF entities. The distribution of affected and impaired segments within the contracting left ventricular (LV) myocardium have also not been compared. Therefore, we assessed myocardial function impairment by strain in patients with HF and control subjects by magnetic resonance imaging after clinically phenotyping these patients. Methods and results: This prospective study conducted at two centres in Germany between 2017 and 2018 enrolled stable outpatient subjects with HF [n = 56, including HF with reduced ejection fraction (HFrEF), HF with mid-range ejection fraction (HFmrEF), and HF with preserved ejection fraction (HFpEF)] and a control cohort (n = 12). Parameters assessed included measures for external myocardial function, for example, cardiac index and myocardial deformation measurements by cardiovascular magnetic resonance imaging, left ventricular global longitudinal strain (GLS), the global circumferential strain (GCS) and the regional distribution of segment deformation within the LV myocardium, as well as basic phenotypical characteristics. Comparison of the cardiac indices at rest showed no differences neither between the HF groups nor between the control group and HF patients (one-way ANOVA P = 0.70). The analysis of the strain data revealed differences between all groups in both LV GLS (One-way ANOVA: P < 0.01. Controls vs. HFpEF: -20.48 ± 1.62 vs. -19.27 ± 1.25. HFpEF vs. HFmrEF: -19.27 ± 1.25 vs. -15.72 ± 2.76. HFmrEF vs. HFrEF: -15.72 ± 2.76 vs. -11.51 ± 3.97.) and LV GCS (One-way ANOVA: P < 0.01. Controls vs. HFpEF: -19.74 ± 2.18 vs. -17.47 ± 2.10. HFpEF vs. HFmrEF: -17.47 ± 2.10 vs. -12.78 ± 3.47. HFrEF: -11.41 ± 3.27). Comparing the segment deformation distribution patterns highlighted the discriminating effect between the groups was much more prominent between the groups (one-way ANOVA P < 0.01) when compared by a score combining regional effects and a global view on the LV. Further analyses of the patterns among the segments affected showed that while the LVEF is preserved in HFpEF, the segments impaired in their contractility are located in the ventricular septum. The worse the LVEF is, the more segments are affected, but the septum remains an outstanding location with the most severe contractility impairment throughout the HF entities. Conclusions: While cardiac index at rest did not differ significantly between controls and stable HF patients suffering from HFrEF, HFmrEF, or HFpEF, the groups did differ significantly in LV GLS and LV GCS values. Regional strain analysis revealed that the LV septum is the location affected most, with reduced values already visible in HFpEF and further reductions in HFmrEF and HFrEF

    CMR tissue characterization in patients with HFmrEF

    No full text
    The characteristics and optimal management of heart failure with a moderately reduced ejection fraction (HFmrEF, LV-EF 40–50%) are still unclear. Advanced cardiac MRI o ers information about function, fibrosis and inflammation of the myocardium, and might help to characterize HFmrEF in terms of adverse cardiac remodeling. We, therefore, examined 17 patients with HFpEF, 18 with HFmrEF, 17 with HFrEF and 17 healthy, age-matched controls with cardiac MRI (Phillips 1.5 T). T1 and T2 relaxation time mapping was performed and the extracellular volume (ECV) was calculated. Global circumferential (GCS) and longitudinal strain (GLS) were derived from cine images. GLS (15.7 2.1) and GCS (19.9 4.1) were moderately reduced in HFmrEF, resembling systolic dysfunction. Native T1 relaxation times were elevated in HFmrEF (1027 40 ms) and HFrEF (1033 54 ms) compared to healthy controls (972 31 ms) and HFpEF (985 32 ms). T2 relaxation times were elevated in HFmrEF (55.4 3.4 ms) and HFrEF (56.0 6.0 ms) compared to healthy controls (50.6 2.1 ms). Di erences in ECV did not reach statistical significance. HFmrEF di ers from healthy controls and shares similarities with HFrEF in cardiac MRI parameters of fibrosis and inflammation

    Noninvasive evaluation of pulmonary artery stiffness in heart failure patients via cardiovascular magnetic resonance

    No full text
    Abstract Heart failure (HF) presents manifestations in both cardiac and vascular abnormalities. Pulmonary hypertension (PH) is prevalent in up 50% of HF patients. While pulmonary arterial hypertension (PAH) is closely associated with pulmonary artery (PA) stiffness, the association of HF caused, post-capillary PH and PA stiffness is unknown. We aimed to assess and compare PA stiffness and blood flow hemodynamics noninvasively across HF entities and control subjects without HF using CMR. We analyzed data of a prospectively conducted study with 74 adults, including 55 patients with HF across the spectrum (20 HF with preserved ejection fraction [HFpEF], 18 HF with mildly-reduced ejection fraction [HFmrEF] and 17 HF with reduced ejection fraction [HFrEF]) as well as 19 control subjects without HF. PA stiffness was defined as reduced vascular compliance, indicated primarily by the relative area change (RAC), altered flow hemodynamics were detected by increased flow velocities, mainly by pulse wave velocity (PWV). Correlations between the variables were explored using correlation and linear regression analysis. PA stiffness was significantly increased in HF patients compared to controls (RAC 30.92 ± 8.47 vs. 50.08 ± 9.08%, p < 0.001). PA blood flow parameters were significantly altered in HF patients (PWV 3.03 ± 0.53 vs. 2.11 ± 0.48, p < 0.001). These results were consistent in all three HF groups (HFrEF, HFmrEF and HFpEF) compared to the control group. Furthermore, PA stiffness was associated with higher NT-proBNP levels and a reduced functional status. PA stiffness can be assessed non-invasively by CMR. PA stiffness is increased in HFrEF, HFmrEF and HFpEF patients when compared to control subjects. Trial registration The study was registered at the German Clinical Trials Register (DRKS, registration number: DRKS00015615)

    Variability of Myocardial Strain During Isometric Exercise in Subjects With and Without Heart Failure

    Get PDF
    ackground: Fast strain-encoded cardiac magnetic resonance imaging (cMRI, fast-SENC) is a novel technology potentially improving characterization of heart failure (HF) patients by quantifying cardiac strain. We sought to describe the impact of isometric handgrip exercise (HG) on cardiac strain assessed by fast-SENC in HF patients and controls. Methods: Patients with stable HF and controls were examined using cMRI at rest and during HG. Left ventricular (LV) global longitudinal strain (GLS) and global circumferential (GCS) were derived from image analysis software using fast-SENC. [...]
    corecore