224 research outputs found

    Whole genome sequence association analysis of fasting glucose and fasting insulin levels in diverse cohorts from the NHLBI TOPMed program

    Get PDF
    The genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied mostly through genome arrays, resulting in over 100 associated variants. We extended this work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI’s Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic individuals from five race-ethnicities/populations (African, Asian, European, Hispanic and Samoan) were included. Eight variants were significantly associated with FG or FI across previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally characterize suggestive associations with FG or FI near previously identified SLC30A8, TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin states, annotation principal components, and others) to elucidate variant-to-function hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning intergenic and intronic regions creating a foundation for future sequencing-based investigations of glycemic traits

    eSCAN: scan regulatory regions for aggregate association testing using whole-genome sequencing data

    Get PDF
    Multiple statistical methods for aggregate association testing have been developed for whole-genome sequencing (WGS) data. Many aggregate variants in a given genomic window and ignore existing knowledge to define test regions, resulting in many identified regions not clearly linked to genes, and thus, limiting biological understanding. Functional information from new technologies (such as Hi-C and its derivatives), which can help link enhancers to their effector genes, can be leveraged to predefine variant sets for aggregate testing in WGS data. Here, we propose the eSCAN (scan the enhancers) method for genome-wide assessment of enhancer regions in sequencing studies, combining the advantages of dynamic window selection in SCANG (SCAN the Genome), a previously developed method, with the advantages of incorporating putative regulatory regions from annotation. eSCAN, by searching in putative enhancers, increases statistical power and aids mechanistic interpretation, as demonstrated by extensive simulation studies. We also apply eSCAN for blood cell traits using NHLBI Trans-Omics for Precision Medicine WGS data. Results from real data analysis show that eSCAN is able to capture more significant signals, and these signals are of shorter length (indicating higher resolution fine-mapping capability) and drive association of larger regions detected by other methods

    Super interactive promoters provide insight into cell type-specific regulatory networks in blood lineage cell types

    Get PDF
    Existing studies of chromatin conformation have primarily focused on potential enhancers interacting with gene promoters. By contrast, the interactivity of promoters per se, while equally critical to understanding transcriptional control, has been largely unexplored, particularly in a cell type-specific manner for blood lineage cell types. In this study, we leverage promoter capture Hi-C data across a compendium of blood lineage cell types to identify and characterize cell type-specific super-interactive promoters (SIPs). Notably, promoter-interacting regions (PIRs) of SIPs are more likely to overlap with cell type-specific ATAC-seq peaks and GWAS variants for relevant blood cell traits than PIRs of non-SIPs. Moreover, PIRs of cell-type-specific SIPs show enriched heritability of relevant blood cell trait (s), and are more enriched with GWAS variants associated with blood cell traits compared to PIRs of non-SIPs. Further, SIP genes tend to express at a higher level in the corresponding cell type. Importantly, SIP subnetworks incorporating cell-type-specific SIPs and ATAC-seq peaks help interpret GWAS variants. Examples include GWAS variants associated with platelet count near the megakaryocyte SIP gene EPHB3 and variants associated lymphocyte count near the native CD4 T-Cell SIP gene ETS1. Interestingly, around 25.7% ~ 39.6% blood cell traits GWAS variants residing in SIP PIR regions disrupt transcription factor binding motifs. Importantly, our analysis shows the potential of using promoter-centric analyses of chromatin spatial organization data to identify biologically important genes and their regulatory regions

    Associations of coronary artery calcified plaque density with mortality in type 2 diabetes: the Diabetes Heart Study

    Get PDF
    Abstract Background Coronary artery calcified plaque (CAC) is strongly predictive of cardiovascular disease (CVD) events and mortality, both in general populations and individuals with type 2 diabetes at high risk for CVD. CAC is typically reported as an Agatston score, which is weighted for increased plaque density. However, the role of CAC density in CVD risk prediction, independently and with CAC volume, remains unclear. Methods We examined the role of CAC density in individuals with type 2 diabetes from the family-based Diabetes Heart Study and the African American-Diabetes Heart Study. CAC density was calculated as mass divided by volume, and associations with incident all-cause and CVD mortality [median follow-up 10.2 years European Americans (n = 902, n = 286 deceased), 5.2 years African Americans (n = 552, n = 93 deceased)] were examined using Cox proportional hazards models, independently and in models adjusted for CAC volume. Results In European Americans, CAC density, like Agatston score and volume, was consistently associated with increased risk of all-cause and CVD mortality (p ≤ 0.002) in models adjusted for age, sex, statin use, total cholesterol, HDL, systolic blood pressure, high blood pressure medication use, and current smoking. However, these associations were no longer significant when models were additionally adjusted for CAC volume. CAC density was not significantly associated with mortality, either alone or adjusted for CAC volume, in African Americans. Conclusions CAC density is not associated with mortality independent from CAC volume in European Americans and African Americans with type 2 diabetes

    Genome-wide association study of iron traits and relation to diabetes in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL): potential genomic intersection of iron and glucose regulation?

    Get PDF
    Genetic variants contribute to normal variation of iron-related traits and may also cause clinical syndromes of iron deficiency or excess. Iron overload and deficiency can adversely affect human health. For example, elevated iron storage is associated with increased diabetes risk, although mechanisms are still being investigated. We conducted the first genome-wide association study of serum iron, total iron binding capacity (TIBC), transferrin saturation, and ferritin in a Hispanic/Latino cohort, the Hispanic Community Health Study/Study of Latinos (>12 000 participants) and also assessed the generalization of previously known loci to this population. We then evaluated whether iron-associated variants were associated with diabetes and glycemic traits. We found evidence for a novel association between TIBC and a variant near the gene for protein phosphatase 1, regulatory subunit 3B (PPP1R3B; rs4841132, β = -0.116, P = 7.44 × 10-8). The effect strengthened when iron deficient individuals were excluded (β = -0.121, P = 4.78 × 10-9). Ten of sixteen variants previously associated with iron traits generalized to HCHS/SOL, including variants at the transferrin (TF), hemochromatosis (HFE), fatty acid desaturase 2 (FADS2)/myelin regulatory factor (MYRF), transmembrane protease, serine 6 (TMPRSS6), transferrin receptor (TFR2), N-acetyltransferase 2 (arylamine N-acetyltransferase) (NAT2), ABO blood group (ABO), and GRB2 associated binding protein 3 (GAB3) loci. In examining iron variant associations with glucose homeostasis, an iron-raising variant of TMPRSS6 was associated with lower HbA1c levels (P = 8.66 × 10-10). This association was attenuated upon adjustment for iron measures. In contrast, the iron-raising allele of PPP1R3B was associated with higher levels of fasting glucose (P = 7.70 × 10-7) and fasting insulin (P = 4.79 × 10-6), but these associations were not attenuated upon adjustment for TIBC-so iron is not likely a mediator. These results provide new genetic information on iron traits and their connection with glucose homeostasis

    Metabolomic epidemiology offers insights into disease aetiology

    Get PDF
    Metabolomic epidemiology is the high-throughput study of the relationship between metabolites and health-related traits. This emerging and rapidly growing field has improved our understanding of disease aetiology and contributed to advances in precision medicine. As the field continues to develop, metabolomic epidemiology could lead to the discovery of diagnostic biomarkers predictive of disease risk, aiding in earlier disease detection and better prognosis. In this Review, we discuss key advances facilitated by the field of metabolomic epidemiology for a range of conditions, including cardiometabolic diseases, cancer, Alzheimer’s disease and COVID-19, with a focus on potential clinical utility. Core principles in metabolomic epidemiology, including study design, causal inference methods and multi-omic integration, are briefly discussed. Future directions required for clinical translation of metabolomic epidemiology findings are summarized, emphasizing public health implications. Further work is needed to establish which metabolites reproducibly improve clinical risk prediction in diverse populations and are causally related to disease progression
    corecore