8 research outputs found

    Trainer in a pocket - proof-of-concept of mobile, real-time, foot kinematics feedback for gait pattern normalization in individuals after stroke, incomplete spinal cord injury and elderly patients

    Get PDF
    Background: Walking disabilities negatively affect inclusion in society and quality of life and increase the risk for secondary complications. It has been shown that external feedback applied by therapists and/or robotic training devices enables individuals with gait abnormalities to consciously normalize their gait pattern. However, little is known about the effects of a technically-assisted over ground feedback therapy. The aim of this study was to assess whether automatic real-time feedback provided by a shoe-mounted inertial-sensor-based gait therapy system is feasible in individuals with gait impairments after incomplete spinal cord injury (iSCI), stroke and in the elderly. Methods: In a non-controlled proof-of-concept study, feedback by tablet computer-generated verbalized instructions was given to individuals with iSCI, stroke and old age for normalization of an individually selected gait parameter (stride length, stance or swing duration, or foot-to-ground angle). The training phase consisted of 3 consecutive visits. Four weeks post training a follow-up visit was performed. Visits started with an initial gait analysis (iGA) without feedback, followed by 5 feedback training sessions of 2–3 min and a gait analysis at the end. A universal evaluation and FB scheme based on equidistant levels of deviations from the mean normal value (1 level = 1 standard deviation (SD) of the physiological reference for the feedback parameter) was used for assessment of gait quality as well as for automated adaptation of training difficulty. Overall changes in level over iGAs were detected using a Friedman’s Test. Post-hoc testing was achieved with paired Wilcoxon Tests. The users’ satisfaction was assessed by a customized questionnaire. Results: Fifteen individuals with iSCI, 11 after stroke and 15 elderly completed the training. The average level at iGA significantly decreased over the visits in all groups (Friedman’s test, p < 0.0001), with the biggest decrease between the first and second training visit (4.78 ± 2.84 to 3.02 ± 2.43, p < 0.0001, paired Wilcoxon test). Overall, users rated the system’s usability and its therapeutic effect as positive. Conclusions: Mobile, real-time, verbalized feedback is feasible and results in a normalization of the feedback gait parameter. The results form a first basis for using real-time feedback in task-specific motor rehabilitation programs. Trial registration: DRKS00011853 , retrospectively registered on 2017/03/23

    Lower Motoneuron Dysfunction Impacts Spontaneous Motor Recovery in Acute Cervical Spinal Cord Injury.

    Get PDF
    Paresis after spinal cord injury (SCI) is caused by damage to upper and lower motoneurons (LMNs) and may differentially impact neurological recovery. This prospective monocentric longitudinal observational study investigated the extent and severity of LMN dysfunction and its impact on upper extremity motor recovery after acute cervical SCI. Pathological spontaneous activity at rest and/or increased discharge rates of motor unit action potentials recorded by needle electromyography (EMG) were taken as parameters for LMN dysfunction and its relation to the extent of myelopathy in the first available spine magnetic resonance imaging (MRI) was determined. Motor recovery was assessed by standardized neurological examination within the first four weeks (acute stage) and up to one year (chronic stage) after injury. Eighty-five muscles of 17 individuals with cervical SCI (neurological level of injury from C1 to C7) and a median age of 54 (28-59) years were examined. The results showed that muscles with signs of LMN dysfunction peaked at the lesion center (Χ2 [2, n = 85] = 6.6, p = 0.04) and that the severity of LMN dysfunction correlated with T2-weighted hyperintense MRI signal changes in routine spine MRI at the lesion site (Spearman ρ = 0.31, p = 0.01). Muscles exhibiting signs of LMN dysfunction, as indicated by pathological spontaneous activity at rest and/or increased discharge rates of motor unit action potentials, were associated with more severe paresis in both the acute and chronic stages after SCI (Spearman ρ acute = -0.22, p = 0.04 and chronic = -0.31, p = 0.004). Moreover, the severity of LMN dysfunction in the acute stage was also associated with a greater degree of paresis (Spearman ρ acute = -0.24, p = 0.03 and chronic = -0.35, p = 0.001). While both muscles with and without signs of LMN dysfunction were capable of regaining strength over time, those without LMN dysfunctions had a higher potential to reach full strength. Muscles with signs of LMN dysfunction in the acute stage displayed increased amplitudes of motor unit action potentials with chronic-stage needle EMG, indicating reinnervation through peripheral collateral sprouting as compensatory mechanism (Χ2 [1, n = 72] = 4.3, p = 0.04). Thus, LMN dysfunction represents a relevant factor contributing to motor impairment and recovery in acute cervical SCI. Defined recovery mechanisms (peripheral reinnervation) may at least partially underlie spontaneous recovery in respective muscles. Therefore, assessment of LMN dysfunction could help refine prediction of motor recovery after SCI

    International standards for neurological classification of spinal cord injury: impact of the revised worksheet (revision 02/13) on classification performance

    No full text
    Study Design: Prospective cohort study. Objectives: Comparison of the classification performance between the worksheet revisions of 2011 and 2013 of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI). Settings: Ongoing ISNCSCI instructional courses of the European Multicenter Study on Human Spinal Cord Injury (EMSCI). For quality control all participants were requested to classify five ISNCSCI cases directly before (pre-test) and after (post-test) the workshop. Participants: One hundred twenty-five clinicians working in 22 SCI centers attended the instructional course between November 2011 and March 2015. Seventy-two clinicians completed the post-test with the 2011 revision of the worksheet and 53 with the 2013 revision. Interventions: Not applicable. Outcome Measures: The clinicians’ classification performance assessed by the percentage of correctly determined motor levels (ML) and sensory levels, neurological levels of injury (NLI), ASIA Impairment Scales and zones of partial preservations. Results: While no group differences were found in the pre-tests, the overall performance (rev2011: 92.2% ± 6.7%, rev2013: 94.3% ± 7.7%; P = 0.010), the percentage of correct MLs (83.2% ± 14.5% vs. 88.1% ± 15.3%; P = 0.046) and NLIs (86.1% ± 16.7% vs. 90.9% ± 18.6%; P = 0.043) improved significantly in the post-tests. Detailed ML analysis revealed the largest benefit of the 2013 revision (50.0% vs. 67.0%) in a case with a high cervical injury (NLI C2). Conclusion: The results from the EMSCI ISNCSCI post-tests show a significantly better classification performance using the revised 2013 worksheet presumably due to the body-side based grouping of myotomes and dermatomes and their correct horizontal alignment. Even with these proven advantages of the new layout, the correct determination of MLs in the segments C2–C4 remains difficult

    International standards for neurological classification of spinal cord injury: impact of the revised worksheet (revision 02/13) on classification performance

    Full text link
    Study Design: Prospective cohort study. Objectives: Comparison of the classification performance between the worksheet revisions of 2011 and 2013 of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI). Settings: Ongoing ISNCSCI instructional courses of the European Multicenter Study on Human Spinal Cord Injury (EMSCI). For quality control all participants were requested to classify five ISNCSCI cases directly before (pre-test) and after (post-test) the workshop. Participants: One hundred twenty-five clinicians working in 22 SCI centers attended the instructional course between November 2011 and March 2015. Seventy-two clinicians completed the post-test with the 2011 revision of the worksheet and 53 with the 2013 revision. Interventions: Not applicable. Outcome Measures: The clinicians’ classification performance assessed by the percentage of correctly determined motor levels (ML) and sensory levels, neurological levels of injury (NLI), ASIA Impairment Scales and zones of partial preservations. Results: While no group differences were found in the pre-tests, the overall performance (rev2011: 92.2% ± 6.7%, rev2013: 94.3% ± 7.7%; P = 0.010), the percentage of correct MLs (83.2% ± 14.5% vs. 88.1% ± 15.3%; P = 0.046) and NLIs (86.1% ± 16.7% vs. 90.9% ± 18.6%; P = 0.043) improved significantly in the post-tests. Detailed ML analysis revealed the largest benefit of the 2013 revision (50.0% vs. 67.0%) in a case with a high cervical injury (NLI C2). Conclusion: The results from the EMSCI ISNCSCI post-tests show a significantly better classification performance using the revised 2013 worksheet presumably due to the body-side based grouping of myotomes and dermatomes and their correct horizontal alignment. Even with these proven advantages of the new layout, the correct determination of MLs in the segments C2–C4 remains difficult

    Goal attainment in mobility after acute rehabilitation of mobility-restricting paralysis syndromes with regard to the ambulatory therapeutic level of participation NeuroMoves

    Get PDF
    Background!#!A central goal of rehabilitation in patients with paralysis syndromes after stroke or spinal cord injury (SCI) is to restore independent mobility as a pedestrian or wheelchair user. However, after acute rehabilitation, the mobility frequently deteriorates in the ambulatory setting, despite the delivery of rehabilitative interventions such as physical therapy or the prescription of assistive devices. The aim of the NeuroMoves study is to identify factors that are associated with changes of mobility in the ambulatory setting after acute inpatient rehabilitation, with a particular focus on participation according to the ICF (International Classification of Functioning, Disability and Health).!##!Methods!#!The NeuroMoves study is intended as a national multicenter observational cohort study with 9 clinical sites in Germany. A total of 500 patients with mobility-restricting paralysis syndromes (i.e. stroke or SCI) are to be recruited during acute inpatient rehabilitation prior to discharge to the ambulatory setting. Patients will have 8 months of follow-up in the ambulatory setting. Three study visits at the clinical sites (baseline, midterm, and final) are planned at 4-months intervals. The baseline visit is scheduled at the end of the acute inpatient rehabilitation. During the visits, demographical data, neurological, functional, quality of life, and implementation measures will be assessed. At baseline, each study participant receives an activity tracker (sensor for recording ambulatory mobility) along with a tablet computer for home use over the 8 months study duration. While mounted, the activity tracker records mobility data from which the daily distance covered by walking or wheelchair use can be calculated. Customized applications on the tablet computer remind the study participants to answer structured questionnaires about their health condition and treatment goals for physical therapy. Using the study participants' tablet, therapists will be asked to answer structured questionnaires concerning treatment goals and therapeutic measures they have applied. The primary analysis concerns the association between mobility (daily distance covered) and the degree of participation-oriented rehab interventions. Further exploratory analyses are planned.!##!Discussion!#!The findings could inform healthcare decision-making regarding ambulatory care in Germany focusing on mobility-promoting interventions for patients with mobility-restricting paralysis syndromes.!##!Study registration!#!German Clinical Trials Register, DRKS-ID: DRKS00020487 (18.02.2020)

    Additional file 3: of Trainer in a pocket - proof-of-concept of mobile, real-time, foot kinematics feedback for gait pattern normalization in individuals after stroke, incomplete spinal cord injury and elderly patients

    No full text
    Complete dataset of gait parameters and levels measured / calculated by RehaGait. Complete dataset listing average levels per individual per gait analysis, as well as mean gait parameters (stance and swing duration, foot-to-ground angle, stride length) measured by the RehaGait system. (XLSX 58 kb
    corecore