24 research outputs found

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Small Molecule, Non-Peptide p75NTR Ligands Inhibit Aβ-Induced Neurodegeneration and Synaptic Impairment

    Get PDF
    The p75 neurotrophin receptor (p75NTR) is expressed by neurons particularly vulnerable in Alzheimer's disease (AD). We tested the hypothesis that non-peptide, small molecule p75NTR ligands found to promote survival signaling might prevent Aβ-induced degeneration and synaptic dysfunction. These ligands inhibited Aβ-induced neuritic dystrophy, death of cultured neurons and Aβ-induced death of pyramidal neurons in hippocampal slice cultures. Moreover, ligands inhibited Aβ-induced activation of molecules involved in AD pathology including calpain/cdk5, GSK3β and c-Jun, and tau phosphorylation, and prevented Aβ-induced inactivation of AKT and CREB. Finally, a p75NTR ligand blocked Aβ-induced hippocampal LTP impairment. These studies support an extensive intersection between p75NTR signaling and Aβ pathogenic mechanisms, and introduce a class of specific small molecule ligands with the unique ability to block multiple fundamental AD-related signaling pathways, reverse synaptic impairment and inhibit Aβ-induced neuronal dystrophy and death

    A Model of therapist competencies for the empirically supported interpersonal psychotherapy for adolescent depression

    No full text
    In order to treat adolescent depression, a number of empirically supported treatments (ESTs) have been developed from both the cognitive behavioral therapy (CBT) and interpersonal psychotherapy (IPT-A) frameworks. Research has shown that in order for these treatments to be implemented in routine clinical practice (RCP), effective therapist training must be generated and provided. However, before such training can be developed, a good understanding of the therapist competencies needed to implement these ESTs is required. Sburlati et al. (Clin Child Fam Psychol Rev 14:89-109, 2011) developed a model of therapist competencies for implementing CBT using the well-established Delphi technique. Given that IPT-A differs considerably to CBT, the current study aims to develop a model of therapist competencies for the implementation of IPT-A using a similar procedure as that applied in Sburlati et al. (Clin Child Fam Psychol Rev 14:89-109, 2011). This method involved: (1) identifying and reviewing an empirically supported IPT-A approach, (2) extracting therapist competencies required for the implementation of IPT-A, (3) consulting with a panel of IPT-A experts to generate an overall model of therapist competencies, a nd (4) validating the overall model with the IPT-A manual author. The resultant model offers an empirically derived set of competencies necessary for effectively treating adolescent depression using IPT-A and has wide implications for the development of therapist training, competence assessment measures, and evidence-based practice guidelines. This model, therefore, provides an empirical framework for the development of dissemination and implementation programs aimed at ensuring that adolescents with depression receive effective care in RCP settings. Key similarities and differences between CBT and IPT-A, and the therapist competencies required for implementing these treatments, are also highlighted throughout this article.20 page(s

    Distribution of high affinity choline transporter immunoreactivity in the primate central nervous system

    No full text
    A mouse monoclonal antibody (clone 62-2E8) raised against a human recombinant high-affinity choline transporter (CHT)-glutathione-S-transferase fusion protein was used to determine the distribution of immunoreactive profiles containing this protein in the monkey central nervous system (CNS). Within the monkey telencephalon, CHT-immunoreactive perikarya were found in the striatum, nucleus accumbens, medial septum, vertical and horizontal limb nuclei of the diagonal band, nucleus basalis complex, and the bed nucleus of the stria terminalis. Dense fiber staining was observed within the islands of Calleja, olfactory tubercle, hippocampal complex, amygdala; moderate to light fiber staining was seen in iso- and limbic cortices. CHT-containing fibers were also present in sensory and limbic thalamic nuclei, preoptic and hypothalamic areas, and the floccular lobe of the cerebellum. In the brainstem, CHT-immunoreactive profiles were observed in the pedunculopontine and dorsolateral tegmental nuclei, the Edinger-Westphal, oculomotor, trochlear, trigeminal, abducens, facial, ambiguus, dorsal vagal motor, and hypoglossal nuclei. In the spinal cord, CHT-immunoreactive ventral horn motoneurons were seen in close apposition to intensely immunoreactive C-terminals at the level of the cervical spinal cord. CHT immunostaining revealed a similar distribution of labeled profiles in the aged human brain and spinal cord. Dual fluorescent confocal microscopy revealed that the majority of CHT immunoreactive neurons contained the specific cholinergic marker, choline acetyltransferase, at all levels of the monkey CNS. The present observations indicate that the present CHT antibody labels cholinergic structures within the primate CNS and provides an additional marker for the investigation of cholinergic neuronal function in aging and disease. © 2003 Wiley-Liss, Inc

    Organization of the cholinergic systems in the brain of two lungfishes, Protopterus dolloi and Neoceratodus forsteri

    No full text
    corecore