49 research outputs found
R Package OBsMD for Follow-Up Designs in an Objective Bayesian Framework
Fractional factorial experiments often produce ambiguous results due to confounding among the factors; as a consequence more than one model is consistent with the data. Thus, the practical problem is how to choose additional runs in order to discriminate among the rival models and to identify the active factors. The R package OBsMD solves this problem by implementing the objective Bayesian methodology proposed by Consonni and Deldossi (2016). The main feature of this approach is that the follow-up designs are obtained through the use of just two functions, OBsProb() and OMD() without requiring any prior specifications, being fully automatic. Thus OBsMD provides a simple tool for conducting a design of experiments to solve real world problems
OBsMD: an R package for objective Bayesian model discrimination in follow-up design
Occasionally screening designs do not lead to unequivocal conclusions regarding which combinations of factors (models) are active. From a Bayesian viewpoint, this means that the posterior distribution on model space will be fairly evenly spread out over a few models. In these circumstances, a follow-up design is needed, the aim being of choosing extra runs in order to solve, or at least alleviate, this ambiguity. This R-package OBsMD implements the objective Bayesian methodology developed in Consonni and Deldossi (2013) for this scope
OBsMD: Objective bayesian model discrimination in follow-up designs
Implements the objective Bayesian methodology proposed in Consonni and Deldossi in order to choose the optimal experiment that better discriminate between competing models
11th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society
This book of peer-reviewed contributions presents the latest findings in classification, statistical learning, data analysis and related areas, including supervised and unsupervised classification, clustering, statistical analysis of mixed-type data, big data analysis, statistical modeling, graphical models and social networks. It covers both methodological aspects as well as applications to a wide range of fields such as economics, architecture, medicine, data management, consumer behavior and the gender gap. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field of data analysis and classification. It gathers selected and peer-reviewed contributions presented at the 11th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society (CLADAG 2017), held in Milan, Italy, on September 13–15, 2017