70 research outputs found

    Integrative analysis of hereditary nonpolyposis colorectal cancer: The contribution of allele-specific expression and other assays to diagnostic algorithms

    Get PDF
    The identification of germline variants predisposing to hereditary nonpolyposis colorectal cancer (HNPCC) is crucial for clinical management of carriers, but several probands remain negative for such variants or bear variants of uncertain significance (VUS). Here we describe the results of integrative molecular analyses in 132 HNPCC patients providing evidences for improved genetic testing of HNPCC with traditional or next generation methods. Patients were screened for: germline allele-specific expression (ASE), nucleotide variants, rearrangements and promoter methylation of mismatch repair (MMR) genes; germline EPCAM rearrangements; tumor microsatellite instability (MSI) and immunohistochemical (IHC) MMR protein expression. Probands negative for pathogenic variants of MMR genes were screened for germline APC and MUTYH sequence variants. Most germline defects identified were sequence variants and rearrangements of MMR genes. Remarkably, altered germline ASE of MMR genes was detected in 8/22 (36.5%) probands analyzed, including 3 cases negative at other screenings. Moreover, ASE provided evidence for the pathogenic role and guided the characterization of a VUS shared by 2 additional probands. No germline MMR gene promoter methylation was observed and only one EPCAM rearrangement was detected. In several cases, tumor IHC and MSI diverged from germline screening results. Notably, APC or biallelic MUTYH germline defects were identified in 2/19 probands negative for pathogenic variants of MMR genes. Our results show that ASE complements gDNA-based analyses in the identification of MMR defects and in the characterization of VUS affecting gene expression, increasing the number of germline alterations detected. An appreciable fraction of probands negative for MMR gene variants harbors APC or MUTYH variants. These results indicate that germline ASE analysis and screening for APC and MUTYH defects should be included in HNPCC diagnostic algorithms

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5-11 December, to 17.5% (25/143 samples) in the week 12-18, to 65.9% (89/135 samples) in the week 19-25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF

    Herpesvirus umano 8 (HHV-8): epidemiologia e vie di trasmissione

    No full text
    Dottorato di ricerca in biochimica. 11. Ciclo. A.a. 1998-99. Coordinatore Francesco Conconi. Docente Guida E. CassaiConsiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7, Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    The Role of Dysfunctional Adipose Tissue in Pancreatic Cancer: A Molecular Perspective

    No full text
    Pancreatic cancer (PC) is a lethal malignancy with rising incidence and limited therapeutic options. Obesity is a well-established risk factor for PC development. Moreover, it negatively affects outcome in PC patients. Excessive fat accumulation in obese, over- and normal-weight individuals induces metabolic and inflammatory changes of adipose tissue microenvironment leading to a dysfunctional adipose “organ”. This may drive the association between abnormal fat accumulation and pancreatic cancer. In this review, we describe several molecular mechanisms that underpin this association at both local and systemic levels. We focus on the role of adipose tissue-derived circulating factors including adipokines, hormones and pro-inflammatory cytokines, as well as on the impact of the local adipose tissue in promoting PC. A discussion on potential therapeutic interventions, interfering with pro-tumorigenic effects of dysfunctional adipose tissue in PC, is included. Considering the raise of global obesity, research efforts to uncover the molecular basis of the relationship between pancreatic cancer and adipose tissue dysfunction may provide novel insights for the prevention of this deadly disease. In addition, these efforts may uncover novel targets for personalized interventional strategies aimed at improving the currently unsatisfactory PC therapeutic options
    • …
    corecore