56 research outputs found

    Airbnb and the housing market in Italy. Evidence from six Cities

    Get PDF
    We study how the growth of Airbnb has affected the housing market in six important Italian cities – Milan, Turin, Venice, Florence, Rome, and Naples. These cities differ in terms of tourist attractiveness, seasonality of visitors, business and industry vocation, and morphological constraints to their boundaries. Our empirical strategy accounts for omitted variable bias as well as for reverse causality. We apply an instrumental variable approach by using two alternative measures of cityspecific “touristiness” that vary within cities, according to the relevance of touristic attractions as reviewed by Tripadvisor and Lonely Planet, and over time, based on a measure of Airbnb popularity as proxied by GoogleTrends. We find that Airbnb density leads to increases in rents and sale prices, but the effect varies greatly across cities and, even more, within cities (centre and suburbs). For some cities this impact is virtually non-existent, even in the town centre; for some is weak or even negative, but for others is sizeable. However, the overall quantitative effect remains modest, thus suggesting that attempts to regulate home-sharing and short-term rentals (from this point of view) have to be calibrated with much attention

    Recent Advances on Anilato-Based Molecular Materials with Magnetic and/or Conducting Properties

    Get PDF
    The aim of the present work is to highlight the unique role of anilato-ligands, derivatives of the 2,5-dioxy-1,4-benzoquinone framework containing various substituents at the 3 and 6 positions (X = H, Cl, Br, I, CN, etc.), in engineering a great variety of new materials showing peculiar magnetic and/or conducting properties. Homoleptic anilato-based molecular building blocks and related materials will be discussed. Selected examples of such materials, spanning from graphene-related layered magnetic materials to intercalated supramolecular arrays, ferromagnetic 3D monometallic lanthanoid assemblies, multifunctional materials with coexistence of magnetic/conducting properties and/or chirality and multifunctional metal-organic frameworks (MOFs) will be discussed herein. The influence of (i) the electronic nature of the X substituents and (ii) intermolecular interactions i.e., H-Bonding, Halogen-Bonding, π-π stacking and dipolar interactions, on the physical properties of the resulting material will be also highlighted. A combined structural/physical properties analysis will be reported to provide an effective tool for designing novel anilate-based supramolecular architectures showing improved and/or novel physical properties. The role of the molecular approach in this context is pointed out as well, since it enables the chemical design of the molecular building blocks being suitable for self-assembly to form supramolecular structures with the desired interactions and physical propertie

    Metabolic profile of patients with severe endometriosis: a prospective experimental study

    Get PDF
    Endometriosis is a common disease affecting women in reproductive age. There are several hypotheses on the pathogenesis of this disease. Often, its lesions and symptoms overlap with those of many other medical and surgical conditions, causing a delay in diagnosis. Metabolomics represents a useful diagnostic tool for the study of metabolic changes during a different physiological or pathological status. We used 1H-NMR to explore metabolic alteration in a cohort of patients with endometriosis in order to contribute to a better understanding of the pathophysiology of the disease and to suggest new useful biomarkers. Thirty-seven patients were recruited for the metabolomic analysis: 22 patients affected by symptomatic endometriosis and 15 not affected by it. Their serum samples were collected and analyzed with 1H-NMR. Multivariate statistical analysis was conducted, followed by univariate and pathway analyses. Partial Least Square Discriminant Analysis (PLS-DA) was performed to determine the presence of any differences between the non-endometriosis and endometriosis samples (R2X = 0.596, R2Y = 0.713, Q2 = 0.635, and p < 0.0001). β-hydroxybutyric acid and glutamine were significantly increased, whereas tryptophan was significantly decreased in the endometriosis patients. ROC curves were built to test the diagnostic power of the metabolites (β-hydroxybutyric acid: AUC = 0.85 CI = 0.71–0.99; glutamine: AUC = 0.83 CI = 0.68–0.98; tryptophan: AUC = 0.75 CI = 0.54–0.95; β-hydroxybutyric acid + glutamine + tryptophan AUC = 0.92 CI = 0.81–1). The metabolomic approach enabled the identification of several metabolic alterations occurring in women with endometriosis. These findings may provide new bases for a better understanding of the pathophysiological mechanisms of the disease and for the discovery of new biomarkers. Trial registration number NCT0233781

    Gas Chromatography–Mass Spectrometry (GC–MS) Metabolites Analysis in Endometriosis Patients: A Prospective Observational Translational Study

    Get PDF
    Background: Endometriosis affects women of reproductive age, and its pathogenesis is still unclear. Typically, it overlaps other similar medical and surgical conditions, determining a delay in early diagnosis. Metabolomics allows studying metabolic changes in different physiological or pathological states to discover new potential biomarkers. We used the gas chromatography–mass spectrometer (GC–MS) to explore metabolic alterations in endometriosis to better understand its pathophysiology and find new biomarkers. Methods: Twenty-two serum samples of patients with symptomatic endometriosis and ten without it were collected and subjected to GC–MS analysis. Multivariate and univariate statistical analyses were performed, followed by pathway analysis. Results: Partial least squares discriminant analysis was performed to determine the differences between the two groups (p = 0.003). Threonic acid, 3-hydroxybutyric acid, and proline increased significantly in endometriosis patients, while alanine and valine decreased. ROC curves were built to test the diagnostic power of metabolites. The pathway analysis identified the synthesis and degradation of ketone bodies and the biosynthesis of phenylalanine, tyrosine, and tryptophan as the most altered pathways. Conclusions: The metabolomic approach identifies metabolic alterations in women with endometriosis. These findings may improve our understanding of the pathophysiological mechanisms of disease and the discovery of new biomarkers

    N-Acylethanolamine Acid Amidase Inhibition Potentiates Morphine Analgesia and Delays the Development of Tolerance

    Get PDF
    Opioids are essential drugs for pain management, although long-term use is accompanied by tolerance, necessitating dose escalation, and dependence. Pharmacological treatments that enhance opioid analgesic effects and/or attenuate the development of tolerance (with a desirable opioid-sparing effect in treating pain) are actively sought. Among them, N-palmitoylethanolamide (PEA), an endogenous lipid neuromodulator with anti-inflammatory and neuroprotective properties, was shown to exert anti-hyperalgesic effects and to delay the emergence of morphine tolerance. A selective augmentation in endogenous PEA levels can be achieved by inhibiting N-acylethanolamine acid amidase (NAAA), one of its primary hydrolyzing enzymes. This study aimed to test the hypothesis that NAAA inhibition, with the novel brain permeable NAAA inhibitor AM11095, modulates morphine’s antinociceptive effects and attenuates the development of morphine tolerance in rats. We tested this hypothesis by measuring the pain threshold to noxious mechanical stimuli and, as a neural correlate, we conducted in vivo electrophysiological recordings from pain-sensitive locus coeruleus (LC) noradrenergic neurons in anesthetized rats. AM11095 dose-dependently (3–30 mg/kg) enhanced the antinociceptive effects of morphine and delayed the development of tolerance to chronic morphine in behaving rats. Consistently, AM11095 enhanced morphine-induced attenuation of the response of LC neurons to foot-shocks and prevented the attenuation of morphine effects following chronic treatment. Behavioral and electrophysiological effects of AM11095 on chronic morphine were paralleled by a decrease in glial activation in the spinal cord, an index of opioid-induced neuroinflammation. NAAA inhibition might represent a potential novel therapeutic approach to increase the analgesic effects of opioids and delay the development of tolerance

    Dopaminergic inhibition of human neutrophils is exerted through D1-like receptors and affected by bacterial infection

    Get PDF
    Dopamine (DA) affects immune functions in healthy subjects (HS) and during disease by acting on D1-like (D1 and D5) and D2-like (D2, D3 and D4) dopaminergic receptors (DR); however, its effects on human polymorphonuclear leukocytes (PMN) are still poorly defined. We investigated DR expression in human PMN and the ability of DA to affect cell migration and reactive oxygen species (ROS) production. Experiments were performed on cells from HS and from patients (Pts) with bacterial infections as well, during the acute phase and after recovery. Some experiments were also performed in mice knockout (KO) for the DRD5 gene. PMN from HS express both D1-like and D2-like DR, and exposure to DA results in inhibition of activation-induced morphological changes, migration and ROS production which depend on the activation of D1-like DR. In agreement with these findings, DA inhibited migration of PMN obtained from wild-type mice, but not from DRD5KO mice. In Pts with bacterial infections, during the febrile phase D1-like DRD5 on PMN were downregulated and DA failed to affect PMN migration. Both D1-like DRD5 expression and DA-induced inhibition of PMN migration were however restored after recovery. Dopaminergic inhibition of human PMN is a novel mechanism which is likely to play a key role in the regulation of innate immunity. Evidence obtained in Pts with bacterial infections provides novel clues for the therapeutic modulation of PMN during infectious disease

    Investigation of Genetic Variants Associated with Tryptophan Metabolite Levels via Serotonin and Kynurenine Pathways in Patients with Bipolar Disorder

    Get PDF
    The kynurenine pathway (KP) may play a role in the pathophysiology of bipolar disorder (BD). We conducted a genome-wide association study (GWAS) to identify genetic variants associated with the plasma levels of the metabolites of tryptophan (TRP) via the serotonin (5-HT) and kynurenine (KYN) pathways in 44 patients with BD and 45 healthy controls. We assessed whether variants that were differentially associated with metabolite levels based on the diagnostic status improved the prediction accuracy of BD using penalized regression approaches. We identified several genetic variants that were significantly associated with metabolites (5-HT, 5-hydroxytryptophan (5-HTP), TRP, and quinolinic acid (QA) or metabolite ratios (5-HTP/TRP and KYN/TRP) and for which the diagnostic status exerted a significant effect. The inclusion of genetic variants led to increased accuracy in the prediction of the BD diagnostic status. Specifically, we obtained an accuracy of 0.77 using Least Absolute Shrinkage and Selection Operator (LASSO) regression. The predictors retained as informative in this model included body mass index (BMI), the levels of TRP, QA, and 5-HT, the 5-HTP/TRP ratio, and genetic variants associated with the levels of QA (rs6827515, rs715692, rs425094, rs4645874, and rs77048355) and TRP (rs292212) or the 5-HTP/TRP ratio (rs7902231). In conclusion, our study identified statistically significant associations between metabolites of TRP via the 5-HT and KYN pathways and genetic variants at the genome-wide level. The discriminative performance of penalized regression models incorporating clinical, genetic, and metabolic predictors warrants a follow-up analysis of this panel of determinants
    • …
    corecore