55 research outputs found

    Mechanisms of ring chromosome formation, ring instability and clinical consequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The breakpoints and mechanisms of ring chromosome formation were studied and mapped in 14 patients.</p> <p>Methods</p> <p>Several techniques were performed such as genome-wide array, MLPA (Multiplex Ligation-Dependent Probe Amplification) and FISH (Fluorescent <it>in situ </it>Hybridization).</p> <p>Results</p> <p>The ring chromosomes of patients I to XIV were determined to be, respectively: r(3)(p26.1q29), r(4)(p16.3q35.2), r(10)(p15.3q26.2), r(10)(p15.3q26.13), r(13)(p13q31.1), r(13)(p13q34), r(14)(p13q32.33), r(15)(p13q26.2), r(18)(p11.32q22.2), r(18)(p11.32q21.33), r(18)(p11.21q23), r(22)(p13q13.33), r(22)(p13q13.2), and r(22)(p13q13.2). These rings were found to have been formed by different mechanisms, such as: breaks in both chromosome arms followed by end-to-end reunion (patients IV, VIII, IX, XI, XIII and XIV); a break in one chromosome arm followed by fusion with the subtelomeric region of the other (patients I and II); a break in one chromosome arm followed by fusion with the opposite telomeric region (patients III and X); fusion of two subtelomeric regions (patient VII); and telomere-telomere fusion (patient XII). Thus, the r(14) and one r(22) can be considered complete rings, since there was no loss of relevant genetic material. Two patients (V and VI) with r(13) showed duplication along with terminal deletion of 13q, one of them proved to be inverted, a mechanism known as inv-dup-del. Ring instability was detected by ring loss and secondary aberrations in all but three patients, who presented stable ring chromosomes (II, XIII and XIV).</p> <p>Conclusions</p> <p>We concluded that the clinical phenotype of patients with ring chromosomes may be related with different factors, including gene haploinsufficiency, gene duplications and ring instability. Epigenetic factors due to the circular architecture of ring chromosomes must also be considered, since even complete ring chromosomes can result in phenotypic alterations, as observed in our patients with complete r(14) and r(22).</p

    Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium

    Get PDF
    Evaluating the pathogenicity of a variant is challenging given the plethora of types of genetic evidence that laboratories consider. Deciding how to weigh each type of evidence is difficult, and standards have been needed. In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published guidelines for the assessment of variants in genes associated with Mendelian diseases. Nine molecular diagnostic laboratories involved in the Clinical Sequencing Exploratory Research (CSER) consortium piloted these guidelines on 99 variants spanning all categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign). Nine variants were distributed to all laboratories, and the remaining 90 were evaluated by three laboratories. The laboratories classified each variant by using both the laboratory's own method and the ACMG-AMP criteria. The agreement between the two methods used within laboratories was high (K-alpha = 0.91) with 79% concordance. However, there was only 34% concordance for either classification system across laboratories. After consensus discussions and detailed review of the ACMG-AMP criteria, concordance increased to 71%. Causes of initial discordance in ACMG-AMP classifications were identified, and recommendations on clarification and increased specification of the ACMG-AMP criteria were made. In summary, although an initial pilot of the ACMG-AMP guidelines did not lead to increased concordance in variant interpretation, comparing variant interpretations to identify differences and having a common framework to facilitate resolution of those differences were beneficial for improving agreement, allowing iterative movement toward increased reporting consistency for variants in genes associated with monogenic disease

    Actionable exomic incidental findings in 6503 participants: challenges of variant classification

    Get PDF
    Recommendations for laboratories to report incidental findings from genomic tests have stimulated interest in such results. In order to investigate the criteria and processes for assigning the pathogenicity of specific variants and to estimate the frequency of such incidental findings in patients of European and African ancestry, we classified potentially actionable pathogenic single-nucleotide variants (SNVs) in all 4300 European- and 2203 African-ancestry participants sequenced by the NHLBI Exome Sequencing Project (ESP). We considered 112 gene-disease pairs selected by an expert panel as associated with medically actionable genetic disorders that may be undiagnosed in adults. The resulting classifications were compared to classifications from other clinical and research genetic testing laboratories, as well as with in silico pathogenicity scores. Among European-ancestry participants, 30 of 4300 (0.7%) had a pathogenic SNV and six (0.1%) had a disruptive variant that was expected to be pathogenic, whereas 52 (1.2%) had likely pathogenic SNVs. For African-ancestry participants, six of 2203 (0.3%) had a pathogenic SNV and six (0.3%) had an expected pathogenic disruptive variant, whereas 13 (0.6%) had likely pathogenic SNVs. Genomic Evolutionary Rate Profiling mammalian conservation score and the Combined Annotation Dependent Depletion summary score of conservation, substitution, regulation, and other evidence were compared across pathogenicity assignments and appear to have utility in variant classification. This work provides a refined estimate of the burden of adult onset, medically actionable incidental findings expected from exome sequencing, highlights challenges in variant classification, and demonstrates the need for a better curated variant interpretation knowledge base

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    Case Report Persistent Mosaicism for 12p Duplication/Triplication Chromosome Structural Abnormality in Peripheral Blood

    No full text
    We present a rare case of mosaicism for a structural abnormality of chromosome 12 in a patient with phenotypic features of PallisterKillian syndrome. A six-month-old child with dysmorphic features, exotropia, hypotonia, and developmental delay was mosaic for both a normal karyotype and a cell line with 12p duplication/triplication in 25 percent of metaphase cells. Utilization of fluorescence in situ hybridization (FISH) identified three copies of probes from the end of the short arm of chromosome 12 (TEL(12p13) locus and the subtelomere (12p terminal)) on the structurally abnormal chromosome 12. Genome-wide SNP array analysis revealed that the regions of duplication and triplication were of maternal origin. The abnormal cell line in our patient was present at 25 percent at six months and 19 months of age in both metaphase and interphase cells from peripheral blood, where typically the isochromosome 12p is absent in the newborn. This may suggest that the gene(s) resulting in a growth disadvantage of abnormal cells in peripheral blood of patients with tetrasomy 12p may not have the same influence when present in only three copies

    Persistent Mosaicism for 12p Duplication/Triplication Chromosome Structural Abnormality in Peripheral Blood

    Get PDF
    We present a rare case of mosaicism for a structural abnormality of chromosome 12 in a patient with phenotypic features of Pallister-Killian syndrome. A six-month-old child with dysmorphic features, exotropia, hypotonia, and developmental delay was mosaic for both a normal karyotype and a cell line with 12p duplication/triplication in 25 percent of metaphase cells. Utilization of fluorescence in situ hybridization (FISH) identified three copies of probes from the end of the short arm of chromosome 12 (TEL(12p13) locus and the subtelomere (12p terminal)) on the structurally abnormal chromosome 12. Genome-wide SNP array analysis revealed that the regions of duplication and triplication were of maternal origin. The abnormal cell line in our patient was present at 25 percent at six months and 19 months of age in both metaphase and interphase cells from peripheral blood, where typically the isochromosome 12p is absent in the newborn. This may suggest that the gene(s) resulting in a growth disadvantage of abnormal cells in peripheral blood of patients with tetrasomy 12p may not have the same influence when present in only three copies

    Detection of mutually exclusive mosaicism in a girl with genotype-phenotype discrepancies

    No full text
    Discordance between clinical phenotype and genotype has multiple causes, including mosaicism. Phenotypes can be modified due to tissue distribution, or the presence of multiple abnormal cell lines with different genomic contributions. We have studied a 20-month-old female whose main phenotypes were failure to thrive, developmental delay, and patchy skin pigmentation. Initial chromosome and SNP microarray analysis of her blood revealed a non-mosaic ∼24Mb duplication of 15q25.1q26.3 resulting from the unbalanced translocation of terminal 15q to the short arm of chromosome 15. The most common feature associated with distal trisomy 15q is prenatal and postnatal overgrowth, which was not consistent with this patient\u27s phenotype. The phenotypic discordance, in combination with the patchy skin pigmentation, suggested the presence of mosaicism. Further analysis of skin biopsies from both hyper- and hypopigmented regions confirmed the presence of an additional cell line with the short arm of chromosome X deleted and replaced by the entire long arm of chromosome 15. The Xp deletion, consistent with a variant Turner Syndrome diagnosis, better explained the patient\u27s phenotype. Parental studies revealed that the alterations in both cell lines were de novo and the duplicated distal 15q and the deleted Xp were from different parental origins, suggesting a mitotic event. The possible mechanism for the occurrence of two mutually exclusive structural rearrangements with both involving the long arm of chromosome 15 is discussed
    corecore