86 research outputs found

    Combination antiretroviral therapy and the risk of myocardial infarction

    Get PDF

    The pandemic toll and post-acute sequelae of SARS-CoV-2 in healthcare workers at a Swiss University Hospital.

    Get PDF
    Healthcare workers have potentially been among the most exposed to SARS-CoV-2 infection as well as the deleterious toll of the pandemic. This study has the objective to differentiate the pandemic toll from post-acute sequelae of SARS-CoV-2 infection in healthcare workers compared to the general population. The study was conducted between April and July 2021 at the Geneva University Hospitals, Switzerland. Eligible participants were all tested staff, and outpatient individuals tested for SARS-CoV-2 at the same hospital. The primary outcome was the prevalence of symptoms in healthcare workers compared to the general population, with measures of COVID-related symptoms and functional impairment, using prevalence estimates and multivariable logistic regression models. Healthcare workers (n=3,083) suffered mostly from fatigue (25.5%), headache (10.0%), difficulty concentrating (7.9%), exhaustion/burnout (7.1%), insomnia (6.2%), myalgia (6.7%) and arthralgia (6.3%). Regardless of SARS-CoV-2 infection, all symptoms were significantly higher in healthcare workers than the general population (n=3,556). SARS-CoV-2 infection in healthcare workers was associated with loss or change in smell, loss or change in taste, palpitations, dyspnea, difficulty concentrating, fatigue, and headache. Functional impairment was more significant in healthcare workers compared to the general population (aOR 2.28; 1.76-2.96), with a positive association with SARS-CoV-2 infection (aOR 3.81; 2.59-5.60). Symptoms and functional impairment in healthcare workers were increased compared to the general population, and potentially related to the pandemic toll as well as post-acute sequelae of SARS-CoV-2 infection. These findings are of concern, considering the essential role of healthcare workers in caring for all patients including and beyond COVID-19

    Assessment of a six gene panel for the molecular detection of circulating tumor cells in the blood of female cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The presence of circulating tumor cells (CTC) in the peripheral blood of cancer patients has been described for various solid tumors and their clinical relevance has been shown. CTC detection based on the analysis of epithelial antigens might be hampered by the genetic heterogeneity of the primary tumor and loss of epithelial antigens. Therefore, we aimed to identify new gene markers for the PCR-based detection of CTC in female cancer patients.</p> <p>Methods</p> <p>Gene expression of 38 cancer cell lines (breast, ovarian, cervical and endometrial) and of 10 peripheral blood mononuclear cell (PBMC) samples from healthy female donors was measured using microarray technology (Applied Biosystems). Differentially expressed genes were identified using the maxT test and the 50% one-sided trimmed maxT-test. Confirmatory RT-qPCR was performed for 380 gene targets using the AB TaqMan<sup>® </sup>Low Density Arrays. Then, 93 gene targets were analyzed using the same RT-qPCR platform in tumor tissues of 126 patients with primary breast, ovarian or endometrial cancer. Finally, blood samples from 26 healthy women and from 125 patients (primary breast, ovarian, cervical, or endometrial cancer, and advanced breast cancer) were analyzed following OncoQuick enrichment and RNA pre-amplification. Likewise, <it>hMAM </it>and <it>EpCAM </it>gene expression was analyzed in the blood of breast and ovarian cancer patients. For each gene, a cut-off threshold value was set at three standard deviations from the mean expression level of the healthy controls to identify potential markers for CTC detection.</p> <p>Results</p> <p>Six genes were over-expressed in blood samples from 81% of patients with advanced and 29% of patients with primary breast cancer. <it>EpCAM </it>gene expression was detected in 19% and 5% of patients, respectively, whereas <it>hMAM </it>gene expression was observed in the advanced group (39%) only. Multimarker analysis using the new six gene panel positively identified 44% of the cervical, 64% of the endometrial and 19% of the ovarian cancer patients.</p> <p>Conclusions</p> <p>The panel of six genes was found superior to <it>EpCAM </it>and <it>hMAM </it>for the detection of circulating tumor cells in the blood of breast cancer, and they may serve as potential markers for CTC derived from endometrial, cervical, and ovarian cancers.</p

    Effect of surgical experience and spine subspecialty on the reliability of the {AO} Spine Upper Cervical Injury Classification System

    Get PDF
    OBJECTIVE The objective of this paper was to determine the interobserver reliability and intraobserver reproducibility of the AO Spine Upper Cervical Injury Classification System based on surgeon experience (&lt; 5 years, 5–10 years, 10–20 years, and &gt; 20 years) and surgical subspecialty (orthopedic spine surgery, neurosurgery, and "other" surgery). METHODS A total of 11,601 assessments of upper cervical spine injuries were evaluated based on the AO Spine Upper Cervical Injury Classification System. Reliability and reproducibility scores were obtained twice, with a 3-week time interval. Descriptive statistics were utilized to examine the percentage of accurately classified injuries, and Pearson’s chi-square or Fisher’s exact test was used to screen for potentially relevant differences between study participants. Kappa coefficients (κ) determined the interobserver reliability and intraobserver reproducibility. RESULTS The intraobserver reproducibility was substantial for surgeon experience level (&lt; 5 years: 0.74 vs 5–10 years: 0.69 vs 10–20 years: 0.69 vs &gt; 20 years: 0.70) and surgical subspecialty (orthopedic spine: 0.71 vs neurosurgery: 0.69 vs other: 0.68). Furthermore, the interobserver reliability was substantial for all surgical experience groups on assessment 1 (&lt; 5 years: 0.67 vs 5–10 years: 0.62 vs 10–20 years: 0.61 vs &gt; 20 years: 0.62), and only surgeons with &gt; 20 years of experience did not have substantial reliability on assessment 2 (&lt; 5 years: 0.62 vs 5–10 years: 0.61 vs 10–20 years: 0.61 vs &gt; 20 years: 0.59). Orthopedic spine surgeons and neurosurgeons had substantial intraobserver reproducibility on both assessment 1 (0.64 vs 0.63) and assessment 2 (0.62 vs 0.63), while other surgeons had moderate reliability on assessment 1 (0.43) and fair reliability on assessment 2 (0.36). CONCLUSIONS The international reliability and reproducibility scores for the AO Spine Upper Cervical Injury Classification System demonstrated substantial intraobserver reproducibility and interobserver reliability regardless of surgical experience and spine subspecialty. These results support the global application of this classification system

    Cloning and characterization of mammalian cyclin E2.

    No full text

    Quantification of Lithological Heterogeneity Within Opalinus Clay: Toward a Uniform Subfacies Classification Scheme Using a Novel Automated Core Image Recognition Tool

    No full text
    The Opalinus Clay is notable in Switzerland as being the selected host rock for deep geological disposal of radioactive waste. Since the early 1990’s, this argillaceous mudstone formation of Jurassic age has been intensively studied within the framework of national and international projects to characterize its geological, hydrological, mechanical, thermal, chemical, and biological properties. While there is no formal stratigraphic subdivision, the Opalinus Clay lithology is classically divided into several, dam- to m-scale sub-units (or facies), depending on location. Recent multi-proxy studies (combining petrographic, petrophysical, geochemical, and mineralogical analyses) have however demonstrated that high, intra-facies, lithological heterogeneity occurs at the dm- to cm-scale. To constrain this small-scale heterogeneity into distinct lithological units (subfacies), the present study aims at defining and presenting a convenient subfacies classification scheme covering the overall Opalinus Clay lithology across northern Switzerland. Petrographic (macro- and microfacies), mineralogical (X-ray diffraction) and textural (image analysis, machine learning and 3D X-ray computed tomography) analyses are performed on diverse drill cores from the Mont Terri rock laboratory (northwestern Switzerland), and results are extended further to the east (Riniken, Weiach, and Benken). Most of the investigated Opalinus Clay can be described by the use of five distinctive subfacies types (SF1 to SF5), which are visually and quantitatively distinguishable by texture (grain size, bedding, fabric, and color) and composition (nature and mineralogy of components). The five subfacies types can be further refined by additional attributes and sedimentary characteristics (biogenic, diagenetic, and structural). Eventually, the widespread and consistent use of standardized Opalinus Clay subfacies types provides the means to harmonize petrographic descriptions within multidisciplinary research projects, enhance reproducibility of in situ experiments, and further evidence the tight relations between lithology and various rock properties
    corecore