316 research outputs found
Temperature dependent photoluminescence of single CdS nanowires
Temperature dependent photoluminescence (PL) is used to study the electronic
properties of single CdS nanowires. At low temperatures, both near-band edge
(NBE) photoluminescence (PL) and spatially-localized defect-related PL are
observed in many nanowires. The intensity of the defect states is a sensitive
tool to judge the character and structural uniformity of nanowires. As the
temperature is raised, the defect states rapidly quench at varying rates
leaving the NBE PL which dominates up to room temperature. All PL lines from
nanowires follow closely the temperature-dependent band edge, similar to that
observed in bulk CdS.Comment: 11 pages, 4 figure
Low temperature photoluminescence imaging and time-resolved spectroscopy of single CdS nanowires
Time-resolved photoluminescence (PL) and micro-PL imaging were used to study
single CdS nanowires at 10 K. The low-temperature PL of all CdS nanowires
exhibit spectral features near energies associated with free and bound exciton
transitions, with the transition energies and emission intensities varying
along the length of the nanowire. In addition, several nanowires show spatially
localized PL at lower energies which are associated with morphological
irregularities in the nanowires. Time-resolved PL measurements indicate that
exciton recombination in all CdS nanowires is dominated by non-radiative
recombination at the surface of the nanowires.Comment: 9 pages, 3 figures, to be published in Applied Physics Letter
Low temperature properties of a quantum particle coupled to dissipative environments
We study the dynamics of a quantum particle coupled to dissipative (ohmic)
environments, such as an electron liquid. For some choices of couplings, the
properties of the particle can be described in terms of an effective mass. A
particular case is the three dimensional dirty electron liquid. In other
environments, like the one described by the Caldeira-Leggett model, the
effective mass diverges at low temperatures, and quantum effects are strongly
suppressed. For interactions within this class, arbitrarily weak potentials
lead to localized solutions. Particles bound to external potentials, or moving
in closed orbits, can show a first order transition, between strongly and
weakly localized regimes.Comment: 10 page
Decoherence in elastic and polaronic transport via discrete quantum states
Here we study the effect of decoherence on elastic and polaronic transport
via discrete quantum states. The calculations are performed with the help of
nonperturbative computational scheme, based on the Green's function theory
within the framework of polaron transformation (GFT-PT), where the many-body
electron-phonon interaction problem is mapped exactly into a single-electron
multi-channel scattering problem. In particular, the influence of dephasing and
relaxation processes on the shape of the electrical current and shot noise
curves is discussed in detail under the linear and nonlinear transport
conditions.Comment: 11 pages, 3 figure
Quantum Diffusion of H/Ni(111) through the Monte Carlo Wave Function Formalism
We consider a quantum system coupled to a dissipative background with many
degrees of freedom using the Monte Carlo Wave Function method. Instead of
dealing with a density matrix which can be very high-dimensional, the method
consists of integrating a stochastic Schrodinger equation with a non-hermitian
damping term in the evolution operator, and with random quantum jumps. The
method is applied to the diffusion of hydrogen on the Ni(111) surface below 100
K. We show that the recent experimental diffusion data for this system can be
understood through an interband activation process, followed by quantum
tunnelling.Comment: In press at Phys.Rev.Let
Morphology of epitaxial core-shell nanowires
We analyze the morphological stability against azimuthal, axial, and general
helical perturbations for epitaxial core-shell nanowires in the growth regimes
limited by either surface diffusion or evaporation-condensation surface
kinetics. For both regimes, we find that geometric parameters (i.e., core
radius and shell thickness) play a central role in determining whether the
nanowire remains cylindrical or its shell breaks up into epitaxial islands
similar to those observed during Stranski-Krastanow growth in thin epilayers.
The combination of small cores and rapid growth of the shell emerge as key
ingredients for stable shell growth. Our results provide an explanation for the
different core-shell morphologies reported in the Si-Ge system experimentally,
and also identify a growth-induced intrinsic mechanism for the formation of
helical nanowires.Comment: In press, Nano Letters (7 pages, 4 figures
Probing quantum confinement within single core-multishell nanowires
Theoretically core-multishell nanowires under a cross-section of hexagonal geometry should exhibit peculiar confinement effects. Using a hard X-ray nanobeam, here we show experimental evidence for carrier localization phenomena at the hexagon corners by combining synchrotron excited optical luminescence with simultaneous X-ray fluorescence spectroscopy. Applied to single coaxial n-GaN/InGaN multiquantum-well/p-GaN nanowires, our experiment narrows the gap between optical microscopy and high-resolution X-ray imaging and calls for further studies on the underlying mechanisms of optoelectronic nanodevices. © 2012 American Chemical Society.The authors thank Irina Snigireva and Armando Vicente Sole for their assistance with the SEM measurements and data processing using PyMca, respectively. We thank Remi Tocoulou and Peter Cloetens for their help and the ESRF for the beam time allocated. We also thank Andrei Rogalev for the valuable discussions and Gary Admans for the critical reading of the manuscript. This work has been partially supported by the NANOWIRING Marie Curie ITN (EU project no. PITN-GA-2010-265073), as well as by the EPIC-NANOTICS (TEC2011-29120-C05-04) and Q&C-LIGHT (S2009ESP-1503) from Spanish MEC and CAM, respectively.Martínez Criado, G.; Homs Puron, AA.; Alen, B.; Sans Tresserras, JÁ.; Segura Ruiz, J.; Molina Sánchez, A.; Susini, J.... (2012). Probing quantum confinement within single core-multishell nanowires. Nano Letters. 12(11):5829-5834. https://doi.org/10.1021/nl303178uS58295834121
Ultralow Thermal Conductivity of Isotope-Doped Silicon Nanowires
The thermal conductivity of silicon nanowires (SiNWs) is investigated by
molecular dynamics (MD) simulation. It is found that the thermal conductivity
of SiNWs can be reduced exponentially by isotopic defects at room temperature.
The thermal conductivity reaches the minimum, which is about 27% of that of
pure 28Si NW, when doped with fifty percent isotope atoms. The thermal
conductivity of isotopic-superlattice structured SiNWs depends clearly on the
period of superlattice. At a critical period of 1.09 nm, the thermal
conductivity is only 25% of the value of pure Si NW. An anomalous enhancement
of thermal conductivity is observed when the superlattice period is smaller
than this critical length. The ultra-low thermal conductivity of superlattice
structured SiNWs is explained with phonon spectrum theory.Comment: Nano Lett., ASAP Article 10.1021/nl0725998 S1530-6984(07)02599-4 Web
Release Date: December 21, 200
Ge/Si nanowire mesoscopic Josephson junctions
The controlled growth of nanowires (NWs) with dimensions comparable to the
Fermi wavelengths of the charge carriers allows fundamental investigations of
quantum confinement phenomena. Here, we present studies of proximity-induced
superconductivity in undoped Ge/Si core/shell NW heterostructures contacted by
superconducting leads. By using a top gate electrode to modulate the carrier
density in the NW, the critical supercurrent can be tuned from zero to greater
than 100 nA. Furthermore, discrete sub-bands form in the NW due to confinement
in the radial direction, which results in stepwise increases in the critical
current as a function of gate voltage. Transport measurements on these
superconductor-NW-superconductor devices reveal high-order (n = 25) resonant
multiple Andreev reflections, indicating that the NW channel is smooth and the
charge transport is highly coherent. The ability to create and control coherent
superconducting ordered states in semiconductor-superconductor hybrid
nanostructures allows for new opportunities in the study of fundamental
low-dimensional superconductivity
- …