2,641 research outputs found
Hierarchy wave functions--from conformal correlators to Tao-Thouless states
Laughlin's wave functions, describing the fractional quantum Hall effect at
filling factors , can be obtained as correlation functions in
conformal field theory, and recently this construction was extended to Jain's
composite fermion wave functions at filling factors . Here we
generalize this latter construction and present ground state wave functions for
all quantum Hall hierarchy states that are obtained by successive condensation
of quasielectrons (as opposed to quasiholes) in the original hierarchy
construction. By considering these wave functions on a cylinder, we show that
they approach the exact ground states, the Tao-Thouless states, when the
cylinder becomes thin. We also present wave functions for the multi-hole
states, make the connection to Wen's general classification of abelian quantum
Hall fluids, and discuss whether the fractional statistics of the
quasiparticles can be analytically determined. Finally we discuss to what
extent our wave functions can be described in the language of composite
fermions.Comment: 9 page
Pairing via Index theorem
This work is motivated by a specific point of view: at short distances and
high energies the undoped and underdoped cuprates resemble the -flux phase
of the t-J model. The purpose of this paper is to present a mechanism by which
pairing grows out of the doped -flux phase. According to this mechanism
pairing symmetry is determined by a parameter controlling the quantum tunneling
of gauge flux quanta. For zero tunneling the symmetry is ,
while for large tunneling it is . A zero-temperature critical
point separates these two limits
Interacting electrons on a quantum ring: exact and variational approach
We study a system of interacting electrons on a one-dimensional quantum ring
using exact diagonalization and the variational quantum Monte Carlo method. We
examine the accuracy of the Slater-Jastrow -type many-body wave function and
compare energies and pair distribution functions obtained from the two
approaches. Our results show that this wave function captures most correlation
effects. We then study the smooth transition to a regime where the electrons
localize in the rotating frame, which for the ultrathin quantum ring system
happens at quite high electron density.Comment: 19 pages, 10 figures. Accepted for publication in the New Journal of
Physic
Fractional Quantum Hall Effect and vortex lattices
It is demonstrated that all observed fractions at moderate Landau level
fillings for the quantum Hall effect can be obtained without recourse to the
phenomenological concept of composite fermions. The possibility to have the
special topologically nontrivial many-electron wave functions is considered.
Their group classification indicates the special values of of electron density
in the ground states separated by a gap from excited states
The Interiors of Giant Planets: Models and Outstanding Questions
We know that giant planets played a crucial role in the making of our Solar
System. The discovery of giant planets orbiting other stars is a formidable
opportunity to learn more about these objects, what is their composition, how
various processes influence their structure and evolution, and most importantly
how they form. Jupiter, Saturn, Uranus and Neptune can be studied in detail,
mostly from close spacecraft flybys. We can infer that they are all enriched in
heavy elements compared to the Sun, with the relative global enrichments
increasing with distance to the Sun. We can also infer that they possess dense
cores of varied masses. The intercomparison of presently caracterised
extrasolar giant planets show that they are also mainly made of hydrogen and
helium, but that they either have significantly different amounts of heavy
elements, or have had different orbital evolutions, or both. Hence, many
questions remain and are to be answered for significant progresses on the
origins of planets.Comment: 43 pages, 11 figures, 3 tables. To appear in Annual Review of Earth
and Planetary Sciences, vol 33, (2005
Quantum Hall quasielectron operators in conformal field theory
In the conformal field theory (CFT) approach to the quantum Hall effect, the
multi-electron wave functions are expressed as correlation functions in certain
rational CFTs. While this approach has led to a well-understood description of
the fractionally charged quasihole excitations, the quasielectrons have turned
out to be much harder to handle. In particular, forming quasielectron states
requires non-local operators, in sharp contrast to quasiholes that can be
created by local chiral vertex operators. In both cases, the operators are
strongly constrained by general requirements of symmetry, braiding and fusion.
Here we construct a quasielectron operator satisfying these demands and show
that it reproduces known good quasiparticle wave functions, as well as predicts
new ones. In particular we propose explicit wave functions for quasielectron
excitations of the Moore-Read Pfaffian state. Further, this operator allows us
to explicitly express the composite fermion wave functions in the positive Jain
series in hierarchical form, thus settling a longtime controversy. We also
critically discuss the status of the fractional statistics of quasiparticles in
the Abelian hierarchical quantum Hall states, and argue that our construction
of localized quasielectron states sheds new light on their statistics. At the
technical level we introduce a generalized normal ordering, that allows us to
"fuse" an electron operator with the inverse of an hole operator, and also an
alternative approach to the background charge needed to neutralize CFT
correlators. As a result we get a fully holomorphic CFT representation of a
large set of quantum Hall wave functions.Comment: minor changes, publishe
KINEMATIC AND KINETIC COMPARISON BETWEEN AMERICAN AND JAPANESE COLLEGE PITCHERS
The purpose of this study was to investigate the kinematic and kinetic differences between American and Japanese baseball pitchers. Kinematic and kinetic data were analyzed for 11 American pitchers (21±2 y, 190±6 cm, 93±9 kg) and 11 Japanese pitchers (21±1 y, 180±6 cm, 81±7 kg) using 3D motion capture (480 Hz). The American pitchers generated faster ball velocities and increased throwing arm kinetics. At foot contact, the Japanese pitchers had longer stride length, greater shoulder external rotation, and greater elbow flexion. At the instant of maximum shoulder external rotation, American pitchers had less elbow flexion and greater pelvis rotation velocity. The kinematic and kinetic differences seen here may suggest a difference in pitching styles or training between cultures
Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope
Doppler and transit surveys are finding extrasolar planets of ever smaller
mass and radius, and are now sampling the domain of superEarths (1-3 Earth
radii). Recent results from the Doppler surveys suggest that discovery of a
transiting superEarth in the habitable zone of a lower main sequence star may
be possible. We evaluate the prospects for an all-sky transit survey targeted
to the brightest stars, that would find the most favorable cases for
photometric and spectroscopic characterization using the James Webb Space
Telescope (JWST). We use the proposed Transiting Exoplanet Survey Satellite
(TESS) as representative of an all-sky survey. We couple the simulated TESS
yield to a sensitivity model for the MIRI and NIRSpec instruments on JWST. We
focus on the TESS planets with radii between Earth and Neptune. Our simulations
consider secondary eclipse filter photometry using JWST/MIRI, comparing the 11-
and 15-micron bands to measure CO2 absorption in superEarths, as well as
JWST/NIRSpec spectroscopy of water absorption from 1.7-3.0 microns, and CO2
absorption at 4.3-microns. We project that TESS will discover about eight
nearby habitable transiting superEarths. The principal sources of uncertainty
in the prospects for JWST characterization of habitable superEarths are
superEarth frequency and the nature of superEarth atmospheres. Based on our
estimates of these uncertainties, we project that JWST will be able to measure
the temperature, and identify molecular absorptions (water, CO2) in one to four
nearby habitable TESS superEarths.Comment: accepted for PASP; added discussion and figure for habitable planets;
abridged Abstrac
Solution of the local field equations for self-generated glasses
We present a self-consistent local approach to self generated glassiness
which is based on the concept of the dynamical mean field theory to many body
systems. Using a replica approach to self generated glassiness, we map the
problem onto an effective local problem which can be solved exactly. Applying
the approach to the Brazovskii-model, relevant to a large class of systems with
frustrated micro-phase separation, we are able to solve the self-consistent
local theory without using additional approximations. We demonstrate that a
glassy state found earlier in this model is generic and does not arise from the
use of perturbative approximations. In addition we demonstrate that the glassy
state depends strongly on the strength of the frustrated phase separation in
that model.Comment: 11 pages, 3 figure
- …