76 research outputs found
The pseudogap: friend or foe of high Tc?
Although nineteen years have passed since the discovery of high temperature
superconductivity, there is still no consensus on its physical origin. This is
in large part because of a lack of understanding of the state of matter out of
which the superconductivity arises. In optimally and underdoped materials, this
state exhibits a pseudogap at temperatures large compared to the
superconducting transition temperature. Although discovered only three years
after the pioneering work of Bednorz and Muller, the physical origin of this
pseudogap behavior and whether it constitutes a distinct phase of matter is
still shrouded in mystery. In the summer of 2004, a band of physicists gathered
for five weeks at the Aspen Center for Physics to discuss the pseudogap. In
this perspective, we would like to summarize some of the results presented
there and discuss its importance in the context of strongly correlated electron
systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in
Physic
A fast and flexible panoramic virtual reality system for behavioural and electrophysiological experiments
Ideally, neuronal functions would be studied by performing experiments with unconstrained animals whilst they behave in their natural environment. Although this is not feasible currently for most animal models, one can mimic the natural environment in the laboratory by using a virtual reality (VR) environment. Here we present a novel VR system based upon a spherical projection of computer generated images using a modified commercial data projector with an add-on fish-eye lens. This system provides equidistant visual stimulation with extensive coverage of the visual field, high spatio-temporal resolution and flexible stimulus generation using a standard computer. It also includes a track-ball system for closed-loop behavioural experiments with walking animals. We present a detailed description of the system and characterize it thoroughly. Finally, we demonstrate the VR system’s performance whilst operating in closed-loop conditions by showing the movement trajectories of the cockroaches during exploratory behaviour in a VR forest
Association between Serum Interleukin-6 Concentrations and Mortality in Older Adults: The Rancho Bernardo Study
Background: Interleukin-6 (IL-6) may have a protective role in acute liver disease but a detrimental effect in chronic liver disease. It is unknown whether IL-6 is associated with risk of liver-related mortality in humans. Aims: To determine if IL-6 is associated with an increased risk of all-cause, cardiovascular disease (CVD), cancer, and liverrelated mortality. Methods: A prospective cohort study included 1843 participants who attended a research visit in 1984–87. Multiple covariates were ascertained including serum IL-6. Multivariable-adjusted Cox proportional hazards regression analyses were used to examine the association between serum IL-6 as a continuous (log transformed) variable with all-cause, CVD, cancer, and liver-related mortality. Patients with prevalent CVD, cancer and liver disease were excluded for cause-specific mortality. Results: The mean (6 standard deviation) age and body-mass-index (BMI) of participants was 68 (610.6) years and 25 (63.7) Kg/m 2, respectively. During the 25,802 person-years of follow-up, the cumulative all-cause, CVD, cancer, and liverrelated mortality were 53.1 % (N = 978), 25.5%, 11.3%, and 1.3%, respectively. The median (6IQR) length of follow-up was 15.3610.6 years. In multivariable analyses, adjusted for age, sex, alcohol, BMI, diabetes, hypertension, total cholesterol, HDL, and smoking, one-SD increment in log-transformed serum IL-6 was associated with increased risk of all-cause, CVD, cancer, and liver-related mortality, with hazard ratios of 1.48 (95 % CI, 1.33–1.64), 1.38 (95 % CI, 1.16–1.65), 1.35 (95 % CI, 1.02–1.79)
Agonist-induced membrane nanodomain clustering drives GLP-1 receptor responses in pancreatic beta cells
The glucagon-like peptide-1 receptor (GLP-1R), a key pharmacological target in type 2 diabetes (T2D) and obesity, undergoes rapid endocytosis after stimulation by endogenous and therapeutic agonists. We have previously highlighted the relevance of this process in fine-tuning GLP-1R responses in pancreatic beta cells to control insulin secretion. In the present study, we demonstrate an important role for the translocation of active GLP-1Rs into liquid-ordered plasma membrane nanodomains, which act as hotspots for optimal coordination of intracellular signaling and clathrin-mediated endocytosis. This process is dynamically regulated by agonist binding through palmitoylation of the GLP-1R at its carboxyl-terminal tail. Biased GLP-1R agonists and small molecule allosteric modulation both influence GLP-1R palmitoylation, clustering, nanodomain signaling, and internalization. Downstream effects on insulin secretion from pancreatic beta cells indicate that these processes are relevant to GLP-1R physiological actions and might be therapeutically targetable
Decorrelation and efficient coding by retinal ganglion cells
An influential theory of visual processing asserts that retinal center-surround receptive fields remove spatial correlations in the visual world, producing ganglion cell spike trains that are less redundant than the corresponding image pixels. For bright, high-contrast images, this decorrelation would enhance coding efficiency in optic nerve fibers of limited capacity. We tested the central prediction of the theory and found that the spike trains of retinal ganglion cells were indeed decorrelated compared with the visual input. However, most of the decorrelation was accomplished not by the receptive fields, but by nonlinear processing in the retina. We found that a steep response threshold enhanced efficient coding by noisy spike trains and that the effect of this nonlinearity was near optimal in both salamander and macaque retina. These results offer an explanation for the sparseness of retinal spike trains and highlight the importance of treating the full nonlinear character of neural codes
Towards plant-odor-related olfactory neuroethology in Drosophila
Drosophila melanogaster is today one of the three foremost models in olfactory research, paralleled only by the mouse and the nematode. In the last years, immense progress has been achieved by combining neurogenetic tools with neurophysiology, anatomy, chemistry, and behavioral assays. One of the most important tasks for a fruit fly is to find a substrate for eating and laying eggs. To perform this task the fly is dependent on olfactory cues emitted by suitable substrates as e.g. decaying fruit. In addition, in this area, considerable progress has been made during the last years, and more and more natural and behaviorally active ligands have been identified. The future challenge is to tie the progress in different fields together to give us a better understanding of how a fly really behaves. Not in a test tube, but in nature. Here, we review our present state of knowledge regarding Drosophila plant-odor-related olfactory neuroethology to provide a basis for new progress
Design of a Trichromatic Cone Array
Cones with peak sensitivity to light at long (L), medium (M) and short (S) wavelengths are unequal in number on the human retina: S cones are rare (<10%) while increasing in fraction from center to periphery, and the L/M cone proportions are highly variable between individuals. What optical properties of the eye, and statistical properties of natural scenes, might drive this organization? We found that the spatial-chromatic structure of natural scenes was largely symmetric between the L, M and S sensitivity bands. Given this symmetry, short wavelength attenuation by ocular media gave L/M cones a modest signal-to-noise advantage, which was amplified, especially in the denser central retina, by long-wavelength accommodation of the lens. Meanwhile, total information represented by the cone mosaic remained relatively insensitive to L/M proportions. Thus, the observed cone array design along with a long-wavelength accommodated lens provides a selective advantage: it is maximally informative
Sertoli cells maintain leydig cell number and peritubular myoid cell activity in the adult mouse testis
The Sertoli cells are critical regulators of testis differentiation and development. In the adult, however, their known function is restricted largely to maintenance of spermatogenesis. To determine whether the Sertoli cells regulate other aspects of adult testis biology we have used a novel transgenic mouse model in which Amh-Cre induces expression of the receptor for Diphtheria toxin (iDTR) specifically within Sertoli cells. This causes controlled, cell-specific and acute ablation of the Sertoli cell population in the adult animal following Diphtheria toxin injection. Results show that Sertoli cell ablation leads to rapid loss of all germ cell populations. In addition, adult Leydig cell numbers decline by 75% with the remaining cells concentrated around the rete and in the sub-capsular region. In the absence of Sertoli cells, peritubular myoid cell activity is reduced but the cells retain an ability to exclude immune cells from the seminiferous tubules. These data demonstrate that, in addition to support of spermatogenesis, Sertoli cells are required in the adult testis both for retention of the normal adult Leydig cell population and for support of normal peritubular myoid cell function. This has implications for our understanding of male reproductive disorders and wider androgen-related conditions affecting male health
- …