104 research outputs found

    Fiber-Reinforced Wood Composites

    Get PDF
    The technical feasibility of producing internally reinforced laminated wood is evaluated experimentally. Numerous fiber reinforcements and adhesives are assessed, and effects of several processing and environmental parameters are included. Results demonstrate the increased strength and stiffness to be achieved under both tension and flexure by adding fiber reinforcement. Glass reinforcement is particularly suitable

    Butt Joint Reinforcement in Parallel-Laminated Veneer (PLV) Lumber

    Get PDF
    Parallel-laminated veneer (PLV) is a high-strength structural material consisting of thin parallel-laminated wood veneers. The use of graphite-cloth reinforcement, placed on either side of a butt joint in 1 1/2- by 3 1/2- by 32-inch Douglas-fir PLV tensile members, was assessed. The finite-element method of analysis was used to predict the behavior in different unreinforced and reinforced butt-jointed PLV tensile members. Relationships between the reinforcing parameters—length, modulus of elasticity, and thickness—and the stresses in the wood and reinforcement components were developed by regression analysis techniques. The reinforcing mechanism reduced the peak stresses at the butt joint and hence increased the ultimate strength of the member. Design of PLV material whose strength is limited by shear stresses that develop at the butt joint is facilitated by use of the proposed relationships.Experimental testing confirmed the predictions of the finite-element analysis. Failure initiated at the unreinforced joint in the specimens. Average tensile strength increased and variability decreased in reinforced specimens. Application of a small amount of reinforcement at the butt joint has been shown to enhance PLV performance

    Fire and bending properties of blockboard with fire retardant treated veneers

    No full text
    This study evaluated fire and bending properties of blockboards with various fire retardant treated veneers. Blockboards were manufactured using untreated fir strips and sandwiched between treated ekaba veneers at final assembly. The veneers were treated with either boric acid (BA), disodium octoborate tetrahydrate (DOT), alumina trihydrate (ATH), or a BA/DOT mixture. Modulus of rupture and modulus of elasticity tests were performed according to European Standard EN 310. Blockboards were also tested for fire resistance as indicated by a cone calorimeter. Treatments had little negative effect on flexural strength; flexural stiffness was significantly lower for the highest treatment levels. Treatments resulted in a significant reduction in predicted flame spread rate
    • …
    corecore