105 research outputs found
Fiber-Reinforced Wood Composites
The technical feasibility of producing internally reinforced laminated wood is evaluated experimentally. Numerous fiber reinforcements and adhesives are assessed, and effects of several processing and environmental parameters are included. Results demonstrate the increased strength and stiffness to be achieved under both tension and flexure by adding fiber reinforcement. Glass reinforcement is particularly suitable
Butt Joint Reinforcement in Parallel-Laminated Veneer (PLV) Lumber
Parallel-laminated veneer (PLV) is a high-strength structural material consisting of thin parallel-laminated wood veneers. The use of graphite-cloth reinforcement, placed on either side of a butt joint in 1 1/2- by 3 1/2- by 32-inch Douglas-fir PLV tensile members, was assessed. The finite-element method of analysis was used to predict the behavior in different unreinforced and reinforced butt-jointed PLV tensile members. Relationships between the reinforcing parametersâlength, modulus of elasticity, and thicknessâand the stresses in the wood and reinforcement components were developed by regression analysis techniques. The reinforcing mechanism reduced the peak stresses at the butt joint and hence increased the ultimate strength of the member. Design of PLV material whose strength is limited by shear stresses that develop at the butt joint is facilitated by use of the proposed relationships.Experimental testing confirmed the predictions of the finite-element analysis. Failure initiated at the unreinforced joint in the specimens. Average tensile strength increased and variability decreased in reinforced specimens. Application of a small amount of reinforcement at the butt joint has been shown to enhance PLV performance
Efeito do carregamento cĂclico sobre as propriedades de flexĂŁo de painĂ©is comerciais de MDF e MDP
Recommended from our members
Protective intraoperative ventilation with higher versus lower levels of positive end-expiratory pressure in obese patients (PROBESE): study protocol for a randomized controlled trial
Background: Postoperative pulmonary complications (PPCs) increase the morbidity and mortality of surgery in obese patients. High levels of positive end-expiratory pressure (PEEP) with lung recruitment maneuvers may improve intraoperative respiratory function, but they can also compromise hemodynamics, and the effects on PPCs are uncertain. We hypothesized that intraoperative mechanical ventilation using high PEEP with periodic recruitment maneuvers, as compared with low PEEP without recruitment maneuvers, prevents PPCs in obese patients. Methods/design The PRotective Ventilation with Higher versus Lower PEEP during General Anesthesia for Surgery in OBESE Patients (PROBESE) study is a multicenter, two-arm, international randomized controlled trial. In total, 2013 obese patients with body mass index â„35 kg/m2 scheduled for at least 2 h of surgery under general anesthesia and at intermediate to high risk for PPCs will be included. Patients are ventilated intraoperatively with a low tidal volume of 7 ml/kg (predicted body weight) and randomly assigned to PEEP of 12 cmH2O with lung recruitment maneuvers (high PEEP) or PEEP of 4 cmH2O without recruitment maneuvers (low PEEP). The occurrence of PPCs will be recorded as collapsed composite of single adverse pulmonary events and represents the primary endpoint. Discussion To our knowledge, the PROBESE trial is the first multicenter, international randomized controlled trial to compare the effects of two different levels of intraoperative PEEP during protective low tidal volume ventilation on PPCs in obese patients. The results of the PROBESE trial will support anesthesiologists in their decision to choose a certain PEEP level during general anesthesia for surgery in obese patients in an attempt to prevent PPCs. Trial registration ClinicalTrials.gov identifier: NCT02148692. Registered on 23 May 2014; last updated 7 June 2016. Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-1929-0) contains supplementary material, which is available to authorized users
Fire and bending properties of blockboard with fire retardant treated veneers
This study evaluated fire and bending properties of blockboards with various fire retardant treated veneers. Blockboards were manufactured using untreated fir strips and sandwiched between treated ekaba veneers at final assembly. The veneers were treated with either boric acid (BA), disodium octoborate tetrahydrate (DOT), alumina trihydrate (ATH), or a BA/DOT mixture. Modulus of rupture and modulus of elasticity tests were performed according to European Standard EN 310. Blockboards were also tested for fire resistance as indicated by a cone calorimeter. Treatments had little negative effect on flexural strength; flexural stiffness was significantly lower for the highest treatment levels. Treatments resulted in a significant reduction in predicted flame spread rate
- âŠ