963 research outputs found
Wind sensor
An apparatus is described for sensing the temperature, velocity, and direction of the wind, including four temperature-dependent crystal oscillators spaced about an axis, a heater centered on the axis, and a screen through which the wind blows to pass over the crystals. In one method of operation, the frequency of the oscillators is taken when the heater is not energized, to obtain the temperature of the wind, and the frequencies of the oscillators are taken after the heater is energized to determine the direction and velocity of the wind. When the heater is energized, the wind causes the downwind crystals to achieve a higher temperature than the upwind crystals, and with the magnitude of the difference indicating the velocity of the wind
Self-energy of a scalar charge near higher-dimensional black holes
We study the problem of self-energy of charges in higher dimensional static
spacetimes. Application of regularization methods of quantum field theory to
calculation of the classical self-energy of charges leads to model-independent
results. The correction to the self-energy of a scalar charge due to the
gravitational field of black holes of the higher dimensional
Majumdar-Papapetrou spacetime is calculated exactly. It proves to be zero in
even dimensions, but it acquires non-zero value in odd dimensional spacetimes.
The origin of the self-energy correction in odd dimensions is similar to the
origin the conformal anomalies in quantum field theory in even dimensional
spacetimes.Comment: 9 page
Heavy Flavor Probes of Quark Matter
A brief survey of the role of heavy flavors as a probe of the state of matter
produced by high energy heavy ion collisions is presented. Specific examples
include energy loss, initial state gluon saturation, thermalization and flow.
The formation of quarkonium bound states from interactions in which multiple
heavy quark-antiquark pairs are initially produced is examined in general.
Results from statistical hadronization and kinetic models are summarized. New
predictions from the kinetic model for J/Psi at RHIC are presented.Comment: Based on invited plenary talk at Strange Quark Matter 2004, Cape
Town, South Africa, September 15-20, 2004, references completed, published in
J. Phys. G: Nucl. Part. Phys. 31 (2005) S641-S64
First Measurement of Antikaon Phase-Space Distributions in Nucleus-Nucleus Collisions at Subthreshold Beam Energies
Differential production cross sections of K and K mesons have been
measured as function of the polar emission angle in Ni+Ni collisions at a beam
energy of 1.93 AGeV. In near-central collisions, the spectral shapes and the
widths of the rapidity distributions of K and K mesons are in agreement
with the assumption of isotropic emission. In non-central collisions, the K
and K rapidity distributions are broader than expected for a single thermal
source. In this case, the polar angle distributions are strongly
forward-backward peaked and the nonisotropic contribution to the total yield is
about one third both for K and K mesons. The K/K ratio is found
to be about 0.03 independent of the centrality of the reaction. This value is
significantly larger than predicted by microscopic transport calculations if
in-medium modifications of K mesons are neglected.Comment: 16 pages, 3 figures, accepted for publication in Physics Letters
Evidence for a Soft Nuclear Equation-of-State from Kaon Production in Heavy Ion Collisions
The production of pions and kaons has been measured in Au+Au collisions at
beam energies from 0.6 to 1.5 AGeV with the Kaon Spectrometer at SIS/GSI. The
K+ meson multiplicity per nucleon is enhanced in Au+Au collisions by factors up
to 6 relative to C+C reactions whereas the corresponding pion ratio is reduced.
The ratio of the K+ meson excitation functions for Au+Au and C+C collisions
increases with decreasing beam energy. This behavior is expected for a soft
nuclear equation-of-state.Comment: 14 pages, 2 figures, accepted for publication in Phys. Rev. Let
Production of Charged Pions, Kaons and Antikaons in Relativistic C+C and C+Au Collisions
Production cross sections of charged pions, kaons and antikaons have been
measured in C+C and C+Au collisions at beam energies of 1.0 and 1.8 AGeV for
different polar emission angles. The kaon and antikaon energy spectra can be
described by Boltzmann distributions whereas the pion spectra exhibit an
additional enhancement at low energies. The pion multiplicity per participating
nucleon M(pi+)/A_part is a factor of about 3 smaller in C+Au than in C+C
collisions at 1.0 AGeV whereas it differs only little for the C and the Au
target at a beam energy of 1.8 AGeV. The K+ multiplicities per participating
nucleon M(K+)/A_part are independent of the target size at 1 AGeV and at 1.8
AGeV. The K- multiplicity per participating nucleon M(K-)/A_part is reduced by
a factor of about 2 in C+Au as compared to C+C collisions at 1.8 AGeV. This
effect might be caused by the absorption of antikaons in the heavy target
nucleus. Transport model calculations underestimate the K-/K+ ratio for C+C
collisions at 1.8 AGeV by a factor of about 4 if in-medium modifications of K
mesons are neglected.Comment: 19 pages, 14 figures, accepted for publication in Eur. Phys. J.
A Convergent Method for Calculating the Properties of Many Interacting Electrons
A method is presented for calculating binding energies and other properties
of extended interacting systems using the projected density of transitions
(PDoT) which is the probability distribution for transitions of different
energies induced by a given localized operator, the operator on which the
transitions are projected. It is shown that the transition contributing to the
PDoT at each energy is the one which disturbs the system least, and so, by
projecting on appropriate operators, the binding energies of equilibrium
electronic states and the energies of their elementary excitations can be
calculated. The PDoT may be expanded as a continued fraction by the recursion
method, and as in other cases the continued fraction converges exponentially
with the number of arithmetic operations, independent of the size of the
system, in contrast to other numerical methods for which the number of
operations increases with system size to maintain a given accuracy. These
properties are illustrated with a calculation of the binding energies and
zone-boundary spin- wave energies for an infinite spin-1/2 Heisenberg chain,
which is compared with analytic results for this system and extrapolations from
finite rings of spins.Comment: 30 pages, 4 figures, corrected pd
K+ and K- production in heavy-ion collisions at SIS-energies
The production and the propagation of K+ and of K- mesons in heavy-ion
collisions at beam energies of 1 to 2 AGeV have systematically been
investigated with the Kaon Spectrometer KaoS at the SIS at the GSI. The ratio
of the K+ production excitation function for Au+Au and for C+C reactions
increases with decreasing beam energy, which is expected for a soft nuclear
equation-of-state. At 1.5 AGeV a comprehensive study of the K+ and of the K-
emission as a function of the size of the collision system, of the collision
centrality, of the kaon energy, and of the polar emission angle has been
performed. The K-/K+ ratio is found to be nearly constant as a function of the
collision centrality. The spectral slopes and the polar emission patterns are
different for K- and for K+. These observations indicate that K+ mesons
decouple earlier from the reaction zone than K- mesons.Comment: invited talk given at the SQM2003 conference in Atlantic Beach, USA
(March 2003), to be published in Journal of Physics G, 10pages, 7 figure
- …