1,066 research outputs found

    ASYMMETRIC LOADING DURING THE HANG POWER CLEAN - THE EFFECT THAT SIDE DOMINANCE HAS ON BARBELL POWER SYMMETRY

    Get PDF
    The vertical ground reaction force (GRF) of both feet and bar end kinematics were recorded using force platforms and high speed video simultaneously during hang power clean (HPC) performance with typical training intensities, in order to determine whether perceived handedness and ground kinetic asymmetry influenced bar end kinematics. There were significant differences between the GRF when side dominance was determined from GRF asymmetries (p≤0.05), but not when determined by perceived handedness. Similarly, there were significant differences between bar end power outputs when they were determined according to bar end asymmetries but not when determined by perceived handedness or GRF asymmetry. These results suggest mechanisms other than ground kinetic asymmetries influence bar end power output symmetry

    Requirements and test results for the qualification of thermal control coatings

    Get PDF
    Paint type coatings are often used as engineering materials in critical satellite temperature control applications. The functional features of coatings used for temperature control purposes must remain stable throughout the satellite manufacturing process and the satellite mission. The selection of a particular coating depends on matching coating characteristics to mission requirements. The use of paint coatings on satellites, although having an extensive history, requires that the paint be qualified to each application on an individual basis. Thus, the qualification process through testing serves to ensure that paint coatings as engineering materials will fulfill design requirements

    Serotonin regulates mouse cranial neural crest migration.

    Full text link

    Curvature-induced stiffening of a fish fin

    Get PDF
    How fish modulate their fin stiffness during locomotive manoeuvres remains unknown. We show that changing the fin's curvature modulates its stiffness. Modelling the fin as bendable bony rays held together by a membrane, we deduce that fin curvature is manifested as a misalignment of the principal bending axes between neighbouring rays. An external force causes neighbouring rays to bend and splay apart, and thus stretches the membrane. This coupling between bending the rays and stretching the membrane underlies the increase in stiffness. Using analysis of a 3D reconstruction of a Mackerel (Scomber japonicus) pectoral fin, we calculate the range of stiffnesses this fin is expected to span by changing curvature. The 3D reconstruction shows that, even in its geometrically flat state, a functional curvature is embedded within the fin microstructure owing to the morphology of individual rays. Since the ability of a propulsive surface to transmit force to the surrounding fluid is limited by its stiffness, the fin curvature controls the coupling between the fish and its surrounding fluid. Thereby, our results provide mechanical underpinnings and morphological predictions for the hypothesis that the spanned range of fin stiffnesses correlates with the behaviour and the ecological niche of the fish

    Morphogenetic Roles of Acetylcholine

    Get PDF
    In the adult nervous system, neurotransmitters mediate cellular communication within neuronal circuits. In developing tissues and primitive organisms, neurotransmitters subserve growth regulatory and morphogenetic functions. Accumulated evidence suggests that acetylcholine, (ACh), released from growing axons, regulates growth, differentiation, and plasticity of developing central nervous system neurons. In addition to intrinsic cholinergic neurons, the cerebral cortex and hippocampus receive extensive innervation from cholinergic neurons in the basal forebrain, beginning prenatally and continuing throughout the period of active growth and synaptogenesis. Acute exposure to ethanol in early gestation (which prevents formation of basal forebrain cholinergic neurons) or neonatal lesioning of basal forebrain cholinergic neurons, significantly compromises cortical development and produces persistent impairment of cognitive functions. Neonatal visual deprivation alters developmental expression of muscarinic acetylcholine receptors (mAChR) in visual cortex, whereas local infusion of mAChR antagonists impairs plasticity of visual cortical neurons. These findings raise the possibility that exposure to environmental neurotoxins that affect cholinergic systems may seriously compromise brain development and have long-lasting morphologic, neurochemical, and functional consequences

    Rat astroglial somatomedin/insulin-like growth factor binding proteins: characterization and evidence of biologic function

    Get PDF
    Specific binding proteins (BPs) to somatomedin/insulin-like growth factors (Sm/IGFs) have been identified in conditioned media from a variety of cells in culture. By affinity cross-linking using disuccinimidyl suberate, we have covalently cross-linked radiolabeled somatomedin-C/insulin-like growth factor I (Sm-C/IGF I), insulin-like growth factor II (IGF II) and insulin to BPs in conditioned medium (CM) from cultured astroglial cells derived from cerebral cortices of neonatal rats. Two species of radiolabeled Sm/IGF BP complexes of 40,000 Da (40K) and 45K were identified. Competition with unlabeled Sm- C/IGF I and IGF II demonstrated that the BPs in each complex have similar affinities for Sm-C/IGF I and IGF II. The BP in the 45K complex was about 5-fold more sensitive to competition with unlabeled Sm/IGFs than the BP in the 40K complex, suggesting that it either has a higher affinity for Sm/IGFs or is less abundant. Evidence that the BPs in each complex are distinct includes the following findings: (1) insulin competed with Sm/IGF for binding to the 45K complex, but not the 40K complex, and (2) the BP in the 40K complex, but not the 45K complex, was recognized by antibodies raised against a BP purified from CM of buffalo rat liver (BRL) 3A cells. Growth hormone did not affect the apparent secretion of either BP. The binding activity of both BPs was retained after mild heat treatment, changes to extremes of pH (2–10), and prolonged storage at -20 degrees C, but was destroyed after heating to higher temperatures (80 degrees C and greater), reduction, and proteolytic treatment.(ABSTRACT TRUNCATED AT 250 WORDS

    Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of IOP Science for personal use, not for redistribution. The definitive version was published in Bioinspiration & Biomimetics 10 (2015): 056019, doi:10.1088/1748-3190/10/5/056019.Simple mechanical models emulating fish have been used recently to enable targeted study of individual factors contributing to swimming locomotion without the confounding complexity of the whole fish body. Yet, unlike these uniform models, the fish body is notable for its non-uniform material properties. In particular, flexural stiffness decreases along the fish’s anterior-posterior axis. To identify the role of non-uniform bending stiffness during fish-like propulsion, we studied four foil model configurations made by adhering layers of plastic sheets to produce discrete regions of high (5.5x10-5 Nm2) and low (1.9x10-5 Nm2) flexural stiffness of biologically-relevant magnitudes. This resulted in two uniform control foils and two foils with anterior regions of high stiffness and posterior regions of low stiffness. With a mechanical flapping foil controller, we measured forces and torques in three directions and quantified swimming performance under both heaving (no pitch) and constant 0o angle of attack programs. Foils self-propelled at Reynolds number 21,000-115,000 and Strouhal number ~0.20-0.25, values characteristic of fish locomotion. Although previous models have emphasized uniform distributions and heaving motions, the combination of non-uniform stiffness distributions and 0o angle of attack pitching program was better able to reproduce the kinematics of freely-swimming fish. This combination was likewise crucial in maximizing swimming performance and resulted in high self-propelled speeds at low costs of transport and large thrust coefficients at relatively high efficiency. Because these metrics were not all maximized together, selection of the “best” stiffness distribution will depend on actuation constraints and performance goals. These improved models enable more detailed, accurate analyses of fish-like swimming.This work was supported by an NSF Graduate Research Fellowship under grant DGE-1144152 to KNL and by ONR MURI Grant N000141410533 monitored by Dr Bob Brizzolara to GVL.2016-10-0

    Characterization of somatomedin/insulin-like growth factor receptors and correlation with biologic action in cultured neonatal rat astroglial cells

    Get PDF
    The role of somatomedin/insulin-like growth factors (Sm/IGFs) in neural growth and development is not clearly defined. To characterize Sm/IGF receptors and to correlate binding with the biologic actions of Sm/IGFs in a homogeneous population of neural cells, we isolated and studied a nearly pure population of cultured astroglial monolayers derived from cerebral cortices of neonatal rats. Binding of radiolabeled Sm/IGFs was specific, saturable, and reversible, with 90% of the binding occurring within 6 hr of incubation at 4 degrees C. Competitive binding studies with Sm-C/IGF I yielded curvilinear Scatchard plots, while studies with IGF II and multiplication stimulating activity (MSA) yielded linear plots, suggesting that 125I-Sm-C/IGF I binds to more than 1 receptor species, and 125I-IGF II and 125I-MSA bind to one only. These findings were supported by affinity-labeling studies with radiolabeled Sm/IGFs using disuccinimidyl suberate as a cross-linking agent. Sm-C/IGF I appeared to bind to both type I and II Sm/IGF receptors, because cross- linked 125I-Sm-C/IGF I-receptor complexes with molecular weight (Mr) of greater than 300,000 (300K) and 130K (type I receptor) were observed under nonreducing and reducing conditions, respectively, as were 220 and 260K complexes (type II receptor) under the same respective conditions. 125I-IGF II and 125I-MSA, however, bound only to the Mr 220 and 260K moieties under nonreducing and reducing conditions, respectively, suggesting that these peptides bind only to the type II receptor. Competitive binding studies of the cross-linked moieties were consistent with this interpretation. In contrast, 125I-insulin bound poorly to astroglia (less than 0.5% specific binding), and cross- linking studies could not definitely distinguish among low-affinity binding to the type I Sm/IGF receptor, binding to a paucity of insulin receptors, or both. In addition, by combining autoradiography to localize 125I-Sm/IGFs binding on astroglial cells and immunocytochemistry with anti-glial fibrillary acidic protein to identify the cell type, we have demonstrated cell-surface binding and apparent internalization of radiolabeled Sm/IGFs. Concurrent studies of Sm/IGF stimulation of 3H-thymidine incorporation revealed that these cells were most sensitive to Sm-C/IGF I, followed by IGF II and MSA, and insulin. MSA and IGF II, however, were the most potent followed by Sm-C/IGF I and then insulin. Half-maximal stimulations of 3H-thymidine incorporation corresponded closely with half-maximal binding displacement for Sm-C/IGF I and less so for IGF II and MSA.(ABSTRACT TRUNCATED AT 400 WORDS

    The sea urchin embryo as a model for mammalian developmental neurotoxicity: ontogenesis of the high-affinity choline transporter and its role in cholinergic trophic activity.

    Get PDF
    Embryonic development in the sea urchin requires trophic actions of the same neurotransmitters that participate in mammalian brain assembly. We evaluated the development of the high-affinity choline transporter, which controls acetylcholine synthesis. A variety of developmental neurotoxicants affect this transporter in mammalian brain. [3H]Hemicholinium-3 binding to the transporter was found in the cell membrane fraction at stages from the unfertilized egg to pluteus, with a binding affinity comparable with that seen in mammalian brain. Over the course of development, the concentration of transporter sites rose more than 3-fold, achieving concentrations comparable with those of cholinergically enriched mammalian brain regions. Dimethylaminoethanol (DMAE), a competitive inhibitor of choline transport, elicited dysmorphology beginning at the mid-blastula stage, with anomalies beginning progressively later as the concentration of DMAE was lowered. Pretreatment, cotreatment, or delayed treatment with acetylcholine or choline prevented the adverse effects of DMAE. Because acetylcholine was protective at a lower threshold, the DMAE-induced defects were most likely mediated by its effects on acetylcholine synthesis. Transient removal of the hyaline layer enabled a charged transport inhibitor, hemicholinium-3, to penetrate sufficiently to elicit similar anomalies, which were again prevented by acetylcholine or choline. These results indicate that the developing sea urchin possesses a high-affinity choline transporter analogous to that found in the mammalian brain, and, as in mammals, the functioning of this transporter plays a key role in the developmental, trophic activity of acetylcholine. The sea urchin model may thus be useful in high-throughput screening of suspected developmental neurotoxicants
    corecore