21,828 research outputs found

    Modal analysis of high frequency acoustic signal approach for progressive failure monitoring in thin composite plates

    Get PDF
    During the past few decades, many successful research works have evidently shown remarkable capability of Acoustic Emission (AE) for early damage detection of composite materials. Modal Analysis of AE signals or Modal Acoustic Emission (MAE) offers a better theoretical background for acoustic emission analysis which is necessary to get more qualitative and quantitative result. In this paper, the application of MAE concept in a single channel AE source location detection method for failure characterization and monitoring in thin composite plates was presented. Single channel AE source location is one of the recent studies for composite early damage localization, owing to the growing interest and knowledge of modal analysis of AE wave. A tensile test was conducted for glass fiber epoxy resin specimen with small notch. A single channel of AE system was used to determine the AE source location on specimen under testing. The results revealed that AE single channel source location provides reasonable accuracy for glass fiber laminate which was tested

    Effect of the foam embellishments on the pedestrian safety of the vehicle front protection systems

    Get PDF
    Pedestrian safety related compliance requirements are very important in case of design and development of the vehicle front protection systems. Computer aided engineering impact simulations were carried out to evaluate Head Injury Criterion (HIC) of a typical bullbar impacting it with an adult headform and correlated with experimental results. Impact simulations were carried out on the same bullbar covered with semi‐rigid polyurethane foam to study the effect of foam embellishments on the pedestrian safety. Results obtained from the impact simulations were presented in this paper

    Combining Thesaurus Knowledge and Probabilistic Topic Models

    Full text link
    In this paper we present the approach of introducing thesaurus knowledge into probabilistic topic models. The main idea of the approach is based on the assumption that the frequencies of semantically related words and phrases, which are met in the same texts, should be enhanced: this action leads to their larger contribution into topics found in these texts. We have conducted experiments with several thesauri and found that for improving topic models, it is useful to utilize domain-specific knowledge. If a general thesaurus, such as WordNet, is used, the thesaurus-based improvement of topic models can be achieved with excluding hyponymy relations in combined topic models.Comment: Accepted to AIST-2017 conference (http://aistconf.ru/). The final publication will be available at link.springer.co

    New variables, the gravitational action, and boosted quasilocal stress-energy-momentum

    Full text link
    This paper presents a complete set of quasilocal densities which describe the stress-energy-momentum content of the gravitational field and which are built with Ashtekar variables. The densities are defined on a two-surface BB which bounds a generic spacelike hypersurface ÎŁ\Sigma of spacetime. The method used to derive the set of quasilocal densities is a Hamilton-Jacobi analysis of a suitable covariant action principle for the Ashtekar variables. As such, the theory presented here is an Ashtekar-variable reformulation of the metric theory of quasilocal stress-energy-momentum originally due to Brown and York. This work also investigates how the quasilocal densities behave under generalized boosts, i. e. switches of the ÎŁ\Sigma slice spanning BB. It is shown that under such boosts the densities behave in a manner which is similar to the simple boost law for energy-momentum four-vectors in special relativity. The developed formalism is used to obtain a collection of two-surface or boost invariants. With these invariants, one may ``build" several different mass definitions in general relativity, such as the Hawking expression. Also discussed in detail in this paper is the canonical action principle as applied to bounded spacetime regions with ``sharp corners."Comment: Revtex, 41 Pages, 4 figures added. Final version has been revised and improved quite a bit. To appear in Classical and Quantum Gravit

    On the Canonical Reduction of Spherically Symmetric Gravity

    Get PDF
    In a thorough paper Kuchar has examined the canonical reduction of the most general action functional describing the geometrodynamics of the maximally extended Schwarzschild geometry. This reduction yields the true degrees of freedom for (vacuum) spherically symmetric general relativity. The essential technical ingredient in Kuchar's analysis is a canonical transformation to a certain chart on the gravitational phase space which features the Schwarzschild mass parameter MSM_{S}, expressed in terms of what are essentially Arnowitt-Deser-Misner variables, as a canonical coordinate. In this paper we discuss the geometric interpretation of Kuchar's canonical transformation in terms of the theory of quasilocal energy-momentum in general relativity given by Brown and York. We find Kuchar's transformation to be a ``sphere-dependent boost to the rest frame," where the ``rest frame'' is defined by vanishing quasilocal momentum. Furthermore, our formalism is general enough to cover the case of (vacuum) two-dimensional dilaton gravity. Therefore, besides reviewing Kucha\v{r}'s original work for Schwarzschild black holes from the framework of hyperbolic geometry, we present new results concerning the canonical reduction of Witten-black-hole geometrodynamics.Comment: Revtex, 35 pages, no figure
    • 

    corecore