140 research outputs found

    A theory of longitudinal modes in semiconductor lasers

    Get PDF
    A theory of longitudinal mode lasing spectrum of semiconductor lasers is developed which takes into account the nonuniform carrier and photon distributions and local gain spectrum shifts inside lasers with low end mirror reflectivities. The theory gives results consistent with observed longitudinal mode behavior in lasers with reduced facet reflectivity

    Generation and Quenching of Intensity Pulsations in Semiconductor Lasers Coupled to External Cavities

    Get PDF
    The behavior of self-pulsing and nonpulsing lasers coupled to external cavities is investigated experimentally and theoretically. We investigate the dependence of the pulsation characteristics on the external cavity length using a saturable absorber model for self-pulsing lasers. It was found that quenching of self-pulsation occurs only for a certain limited range of external cavity length, and the frequencies of external-cavity induced pulsations lies within a certain range determined by the coupling coefficient. Small-signal analysis allows these ranges to be derived analytically. Hitherto, complex pulsation phenomena can be explained very intuitively by interpreting the combined laser-external cavity system as a microwave oscillator with a limited gain band and discrete mode structure

    Bistability and pulsations in semiconductor lasers with inhomogeneous current injection

    Get PDF
    Bistability and pulsation at microwave frequencies are observed in CW GaAs semiconductor lasers with inhomogeneous current injection. Inhomogeneous current injection is achieved with a segmented contact structure. Crucial to the understanding of the characteristics of this device is the discovery of a negative differential electrical resistance across the contacts of the absorbing section. Depending on the electrical bias condition, this negative differential resistance leads to bistability or light-jumps and self pulsations. A simple model based on conventional rate equations with a linear gain dependence on carrier density explains the observed behavior and suggests a new mechanism in inhomogeneously pumped diode lasers for light-jumps and pulsations which does not depend on the condition for the usually proposed repetitively Q-switching. Investigation of the switching dynamics of this bistable optoelectronic device reveals a delay time which is critically dependent on the trigger pulse amplitude and typically on the order of a few nanoseconds with power-delay products of 100 pJ. The observed critical slowing down and its origin is discussed. We also report on the characteristic of this laser coupled to an external optical cavity and we demonstrate successfully that this bistable laser can be used as a self coupled stylus for optical disk readout with an excellent signal to noise ratio

    Studies of (GaAI)As injection lasers operating with an optical fiber resonator

    Get PDF
    The characteristics of an optical fiber external resonator in conjunction with (GaAl)As stripe geometry lasers are described. We have observed a 6–10% reduction in the threshold current and have obtained 150 ps pulses at gigahertz repetition rates. The fiber resonator has also been used to quench self‐pulsations in a (GaAl)As injection laser. In order to explain many of our results we have used a model that uses the conventional semiconductor rate equations modified by the addition of saturable electron traps and the effects of the external cavity. Our results predict many of the self‐locking effects observed in injection lasers operating in an external cavity. Furthermore, the degree of self‐locking will be a strong function of the external cavity length and the density of saturable absorbers

    Transverse modal behavior of transverse junction stripe laser excited by short electrical pulse

    Get PDF
    The transverse modal behavior of the transverse junction stripe (TJS) laser excited by short (70 ps) electrical pulse is investigated experimentally and theoretically, It is predicted theoretically and observed experimentally that the transverse mode strongly depends on the excitation pulse amplitude and the dc bias current (which is set below threshold), This dependence is found to be due to transient lateral carrier diffusion at the lasing junction

    Passive mode locking of buried heterostructure lasers with nonuniform current injection

    Get PDF
    In this letter we report on a novel method to passively mode lock a semiconductor laser. We present experimental results of GaAlAs buried heterostructure semiconductor laser with a split contact coupled to an external cavity. The split contact structure is used to introduce a controllable amount of saturable absorption which is necessary to initiate passive mode locking. Unlike previous passive mode locking techniques, the method presented does not rely on absorption introduced by damaging the crystal and is consequently inherently more reliable. We have obtained pulses with a full width at half-maximum of 35 ps at repetition frequencies between 500 MHz and 1.5 GHz

    Very high frequency GaAlAs laser field-effect transistor monolithic integrated circuit

    Get PDF
    A very low threshold GaAlAs buried heterostructure laser has been monolithically integrated with a recessed structure metal-semiconductor field-effect transistor on a semi-insulating substrate. At cw operation, the device has a direct modulation bandwidth of at least 4 GHz

    Frequency of oscillations of an error term related to the Euler function

    Get PDF
    Let φ be the Euler function, and consider the error term H in the asymptotic formul

    Narrow linewidth, single frequency semiconductor laser with a phase conjugate external cavity mirror

    Get PDF
    We measure the spectral characteristics of an external cavity semiconductor laser which uses a phase conjugate mirror for its external reflection. This device has significant advantages over the conventional external cavity system owing to the self-aligning nature of the phase conjugate mirror. The fiber delay line self-heterodyne technique is used to measure the fundamental linewidth for single mode operation of this device. It shows the linewidth to be at least as narrow as the instrumental resolution of 100 kHz
    corecore