9 research outputs found

    Strange matter in rotating compact stars

    Full text link
    We have constructed equations of state involving various exotic forms of matter with large strangeness fraction such as hyperon matter, Bose-Einstein condensates of antikaons and strange quark matter. First order phase transitions from hadronic to antikaon condensed and quark matter are considered here. The hadronic phase is described by the relativistic field theoretical model. Later those equations of state are exploited to investigate models of uniformly rotating compact stars. The effect of rotation on the third family branch for the equation of state involving only antikaon condensates is investigated. We also discuss the back bending phenomenon due to a first order phase transition from KK^- condensed to quark matter.Comment: 8 pages, 4 figures; Plenary talk delivered at Strangeness in Quark Matter (SQM) 2004 held in Cape Town, South Africa from 15-20 September; Accepted for publication in the proceedings in Journal of Physics

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    Rotating Stars in Relativity

    Get PDF
    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information one could obtain about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.Comment: 101 pages, 18 figures. The full online-readable version of this article, including several animations, will be published in Living Reviews in Relativity at http://www.livingreviews.org

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology

    How gravitational-wave observations can shape the gamma-ray burst paradigm

    No full text

    Gravitational-wave physics and astronomy in the 2020s and 2030s

    No full text

    Rotating stars in relativity

    No full text

    Kilonovae

    No full text

    Neutron star mergers and how to study them

    No full text
    corecore