673 research outputs found

    Overcoming barriers to effective early parenting interventions for attention-deficit hyperactivity disorder (ADHD): parent and practitioner views

    Get PDF
    BackgroundThe importance of early intervention approaches for the treatment of attention-deficit hyperactivity disorder (ADHD) has been increasingly acknowledged. Parenting programmes (PPs) are recommended for use with preschool children with ADHD. However, low take-up' and high drop-out' rates compromise the effectiveness of such programmes within the community. MethodsThis qualitative study examined the views of 25 parents and 18 practitioners regarding currently available PPs for preschool children with ADHD-type problems in the UK. Semi-structured interviews were undertaken to identify both barriers and facilitators associated with programme access, programme effectiveness, and continued engagement. Results and conclusionsMany of the themes mirrored previous accounts relating to generic PPs for disruptive behaviour problems. There were also a number of ADHD-specific themes. Enhancing parental motivation to change parenting practice and providing an intervention that addresses the parents' own needs (e.g. in relation to self-confidence, depression or parental ADHD), in addition to those of the child, were considered of particular importance. Comparisons between the views of parents and practitioners highlighted a need to increase awareness of parental psychological barriers among practitioners and for better programme advertising generally. Clinical implications and specific recommendations drawn from these findings are discussed and presented

    Insights on Creative Networks:A Social Network Analysis of Five Arts Organisations

    Get PDF

    Spherical single-roll dynamos at large magnetic Reynolds numbers

    Full text link
    This paper concerns kinematic helical dynamos in a spherical fluid body surrounded by an insulator. In particular, we examine their behaviour in the regime of large magnetic Reynolds number \Rm, for which dynamo action is usually concentrated upon a simple resonant stream-surface. The dynamo eigensolutions are computed numerically for two representative single-roll flows using a compact spherical harmonic decomposition and fourth-order finite-differences in radius. These solutions are then compared with the growth rates and eigenfunctions of the Gilbert and Ponty (2000) large \Rm asymptotic theory. We find good agreement between the growth rates when \Rm>10^4, and between the eigenfunctions when \Rm>10^5.Comment: 36 pages, 8 figures. V2: incorrect labels in Fig3 corrected. The article appears in Physics of Fluids, 22, 066601, and may be found at http://pof.aip.org/phfle6/v22/i6/p066601_s1 . (Copyright 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics

    Herschel observations of EXtra-Ordinary Sources (HEXOS): Methanol as a probe of physical conditions in Orion KL

    Get PDF
    We have examined methanol emission from Orion KL withthe Herschel/HIFI instrument, and detected two methanol bands centered at 524 GHz and 1061 GHz. The 524 GHz methanol band (observed in HIFI band 1a) is dominated by the isolated ΔJ = 0, K = −4 → −3, v_t = 0 Q branch, and includes 25 E-type and 2 A-type transitions. The 1061 GHz methanol band (observed in HIFI band 4b) is dominated by the ΔJ = 0, K = 7 → 6, v_t = 0 Q branch transitions which are mostly blended. We have used the isolated E-type v_t = 0 methanol transitions to explore the physical conditions in the molecular gas. With HIFI’s high velocity resolution, the methanol emission contributed by different spatial components along the line of sight toward Orion KL (hot core, low velocity flow, and compact ridge) can be distinguished and studied separately. The isolated transitions detected in these bands cover a broad energy range (upper state energy ranging from 80 K to 900 K), which provides a unique probe of the thermal structure in each spatial component. The observations further show that the compact ridge is externally heated. These observations demonstrate the power of methanol lines as probes of the physical conditions in warm regions in close proximity to young stars

    Reversal of infall in SgrB2(M) revealed by Herschel/HIFI observations of HCN lines at THz frequencies

    Get PDF
    Aims. To investigate the accretion and feedback processes in massive star formation, we analyze the shapes of emission lines from hot molecular cores, whose asymmetries trace infall and expansion motions. Methods. The high-mass star forming region SgrB2(M) was observed with Herschel/HIFI (HEXOS key project) in various lines of HCN and its isotopologues, complemented by APEX data. The observations are compared to spherically symmetric, centrally heated models with density power-law gradient and different velocity fields (infall or infall+expansion), using the radiative transfer code RATRAN. Results. The HCN line profiles are asymmetric, with the emission peak shifting from blue to red with increasing J and decreasing line opacity (HCN to H^(13)CN). This is most evident in the HCN 12–11 line at 1062 GHz. These line shapes are reproduced by a model whose velocity field changes from infall in the outer part to expansion in the inner part. Conclusions. The qualitative reproduction of the HCN lines suggests that infall dominates in the colder, outer regions, but expansion dominates in the warmer, inner regions. We are thus witnessing the onset of feedback in massive star formation, starting to reverse the infall and finally disrupting the whole molecular cloud. To obtain our result, the THz lines uniquely covered by HIFI were critically important

    Herschel observations of EXtra-Ordinary Sources (HEXOS): The present and future of spectral surveys with Herschel/HIFI

    Get PDF
    We present initial results from the Herschel GT key program: Herschel observations of EXtra-Ordinary Sources (HEXOS) and outline the promise and potential of spectral surveys with Herschel/HIFI. The HIFI instrument offers unprecedented sensitivity, as well as continuous spectral coverage across the gaps imposed by the atmosphere, opening up a largely unexplored wavelength regime to high-resolution spectroscopy. We show the spectrum of Orion KL between 480 and 560 GHz and from 1.06 to 1.115 THz. From these data, we confirm that HIFI separately measures the dust continuum and spectrally resolves emission lines in Orion KL. Based on this capability we demonstrate that the line contribution to the broad-band continuum in this molecule-rich source is ~20−40% below 1 THz and declines to a few percent at higher frequencies. We also tentatively identify multiple transitions of HD^(18)O in the spectra. The first detection of this rare isotopologue in the interstellar medium suggests that HDO emission is optically thick in the Orion hot core with HDO/H_2O ~ 0.02. We discuss the implications of this detection for the water D/H ratio in hot cores

    Infrared Observations of the Helix Planetary Nebula

    Get PDF
    We have mapped the Helix (NGC 7293) planetary nebula (PN) with the IRAC instrument on the Spitzer Space Telescope. The Helix is one of the closest bright PNs and therefore provides an opportunity to resolve the small-scale structure in the nebula. The emission from this PN in the 5.8 and 8 μm IRAC bands is dominated by the pure rotational lines of molecular hydrogen, with a smaller contribution from forbidden line emission such as [Ar III] in the ionized region. The IRAC images resolve the "cometary knots," which have been previously studied in this PN. The "tails" of the knots and the radial rays extending into the outer regions of the PN are seen in emission in the IRAC bands. IRS spectra on the main ring and the emission in the IRAC bands are consistent with shock-excited H_2 models, with a small (~10%) component from photodissociation regions. In the northeast arc, the H_2 emission is located in a shell outside the Hα emission

    Herschel observations of EXtra-Ordinary Sources (HEXOS): Observations of H_2O and its isotopologues towards Orion KL

    Get PDF
    We report the detection of more than 48 velocity-resolved ground rotational state transitions of H^(16)_2O, H^(18) _2O, and ^(17)_2O – most for the first time – in both emission and absorption toward Orion KL using Herschel/HIFI. We show that a simple fit, constrained to match the known emission and absorption components along the line of sight, is in excellent agreement with the spectral profiles of all the water lines. Using the measured H^(18)_2O line fluxes, which are less affected by line opacity than their H^(16)_2O counterparts, and an escape probability method, the column densities of H^(18)_2O associated with each emission component are derived. We infer total water abundances of 7.4 × 10^(−5), 1.0 × 10^(−5), and 1.6 × 10^(−5) for the plateau, hot core, and extended warm gas, respectively. In the case of the plateau, this value is consistent with previous measures of the Orion-KL water abundance as well as those of other molecular outflows. In the case of the hot core and extended warm gas, these values are somewhat higher than water abundances derived for other quiescent clouds, suggesting that these regions are likely experiencing enhanced water-ice sublimation from (and reduced freeze-out onto) grain surfaces due to the warmer dust in these sources
    corecore