2 research outputs found

    The effect of a mixture of Lactobacillus strains on silage quality and nutritive value of grass harvested at four growth stages and ensiled for two periods

    Get PDF
    The effect of adding an inoculant containing Lactobacillus buchneri, L. plantarum and L. casei to wilted perennial ryegrass, harvested at four growth stages and ensiled for either 60 or 150 d on silage fermentation quality, chemical composition, rumen degradability of neutral detergent fibre (NDF) and organic matter (OM) and in vitro OM digestibility (OMd) was studied. Compared to the control silage, more sugars were fermented to lactic and acetic acid with the inoculant, resulting in a lower pH, less dry matter losses and protein degradation and a better aerobic stability. The effects of the additive on fermentation quality were more pronounced after 150 than after 60 d of ensiling, because the quality of the control silage was worse after the long ensiling period. The treatment lowered NDF content of grass harvested at the first two growth stages by degrading cell walls to complex sugars, but had no effect on NDF degradability of the silage. The inoculant had no effect on rumen OM degradability nor on OMd after the short ensiling period, but increased the rumen OM degradability for the first two growth stages and OMd for all growth stages after the long ensiling period

    The effect of Lactobacillus buchneri inoculation on the aerobic stability and fermentation characteristics of alfalfa-ryegrass, red clover and maize silage

    Get PDF
    Aerobic spoilage of silages occurs frequently and is undesirable because it reduces both its nutritive and hygienic quality. Silage inoculants containing heterofermentative lactic acid bacteria, like Lactobacillus buchneri, have already been proven to improve aerobic stability by augmented production of acetic acid, which inhibits yeasts. In this study, the effect of L. buchneri on fermentation characteristics and aerobic stability of alfalfa-ryegrass silage, red clover silage and maize silage was assessed using microsilos. Two dosages, 1x10(5) and 3x10(5) cfu g(-1) of fresh matter, were compared to untreated control silage. Inoculation with L. buchneri clearly altered the fermentation characteristics of alfalfa-ryegrass and red clover silage, resulting in a significantly higher aerobic stability at both dosages. The effects of L. buchneri inoculation on maize silage were less clear, but nevertheless the aerobic stability of maize silage inoculated with 1x10(5) cfu g(-1) of fresh matter was significantly higher compared to the untreated silage
    corecore