99 research outputs found

    PWM12: LONGITUDINAL DIFFERENCES IN PSYCHOLOGICAL ADJUSTMENT FOR MEN WITH ERECTILE DYSFUNCTION: RESULTS FROM EXCEED

    Get PDF

    PWM13: PREDICTORS OF RESPONSE TO ERECTILE DYSFUNCTION TREATMENT AT 12 MONTHS: RESULTS FROM THE EXCEED DATABASE

    Get PDF

    Simvastatin improves the sexual health-related quality of life in men aged 40 years and over with erectile dysfunction : Additional data from the Erectile Dysfunction and Statin trial

    Get PDF
    © 2014 Trivedi et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.Background: Erectile dysfunction is prevalent in men over 40 years, affecting their quality of life and that of their partners. The aims of this study were:a)To evaluate the internal reliability of the male erectile dysfunction specific quality of life (MED-QoL) scale and explore its factor structure.b)To evaluate the effect of simvastatin on subscales of the MED-QoL in men over forty years with erectile dysfunction. Methods: This is a double blind randomised controlled trial of 40 mg simvastatin or placebo given once daily for six months to men over forty years with untreated erectile dysfunction, who were not at high cardiovascular risk and were not on anti-hypertensive or lipid-lowering medication. 173 eligible men were recruited from 10 general practices in East of England. Data were collected at two points over 30 weeks. We report on the factor structure of MED-QoL, the internal reliability of the scale and the derived subscales, and the effect of simvastatin on MED-QoL subscales. Results: An initial analysis of the MED-QoL items suggested that a number of items should be removed (MED-QoL-R). Exploratory factor analysis identified three subscales within the MED-QoL-R which accounted for 96% of the variance, related to feelings of Control, initiating Intimacy, and Emotional response to erectile dysfunction. The alpha value for the revised scale (MED-Qol-R) was >0.95 and exceeded .82 for each subscale. Regression analysis showed that patients in the placebo group experienced a significantly reduced feeling of Control over erectile dysfunction than those in the statin group. Those in the placebo group had significantly lower Emotional response than those in the statin group at the close of trial, but there was no significant treatment effect on Intimacy. Conclusions: Our revised MED-QoL-R identified three subscales. Secondary analysis showed a significant improvement in sexual health related quality of life, specifically in relation to perception of control and emotional health in men with untreated erectile dysfunction given 40 mg simvastatin for six months. Trial registration: Current Controlled Trials ISRCTN66772971.Peer reviewe

    Aβ Mediated Diminution of MTT Reduction—An Artefact of Single Cell Culture?

    Get PDF
    The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) reduction assay is a frequently used and easily reproducible method to measure beta-amyloid (Aβ) toxicity in different types of single cell culture. To our knowledge, the influence of Aβ on MTT reduction has never been tested in more complex tissue. Initially, we reproduced the disturbed MTT reduction in neuron and astroglia primary cell cultures from rats as well as in the BV2 microglia cell line, utilizing four different Aβ species, namely freshly dissolved Aβ (25-35), fibrillar Aβ (1-40), oligomeric Aβ (1-42) and oligomeric Aβ (1-40). In contrast to the findings in single cell cultures, none of these Aβ species altered MTT reduction in rat organotypic hippocampal slice cultures (OHC). Moreover, application of Aβ to acutely isolated hippocampal slices from adult rats and in vivo intracerebroventricular injection of Aβ also did not influence the MTT reduction in the respective tissue. Failure of Aβ penetration into the tissue cannot explain the differences between single cells and the more complex brain tissue. Thus electrophysiological investigations disclosed an impairment of long-term potentiation (LTP) in the CA1 region of hippocampal slices from rat by application of oligomeric Aβ (1-40), but not by freshly dissolved Aβ (25-35) or fibrillar Aβ (1-40). In conclusion, the experiments revealed a glaring discrepancy between single cell cultures and complex brain tissue regarding the effect of different Aβ species on MTT reduction. Particularly, the differential effect of oligomeric versus other Aβ forms on LTP was not reflected in the MTT reduction assay. This may indicate that the Aβ oligomer effect on synaptic function reflected by LTP impairment precedes changes in formazane formation rate or that cells embedded in a more natural environment in the tissue are less susceptible to damage by Aβ, raising cautions against the consideration of single cell MTT reduction activity as a reliable assay in Alzheimer's drug discovery studies

    The role of ATP and adenosine in the brain under normoxic and ischemic conditions

    Get PDF
    By taking advantage of some recently synthesized compounds that are able to block ecto-ATPase activity, we demonstrated that adenosine triphosphate (ATP) in the hippocampus exerts an inhibitory action independent of its degradation to adenosine. In addition, tonic activation of P2 receptors contributes to the normally recorded excitatory neurotransmission. The role of P2 receptors becomes critical during ischemia when extracellular ATP concentrations increase. Under such conditions, P2 antagonism is protective. Although ATP exerts a detrimental role under ischemia, it also exerts a trophic role in terms of cell division and differentiation. We recently reported that ATP is spontaneously released from human mesenchymal stem cells (hMSCs) in culture. Moreover, it decreases hMSC proliferation rate at early stages of culture. Increased hMSC differentiation could account for an ATP-induced decrease in cell proliferation. ATP as a homeostatic regulator might exert a different effect on cell trophism according to the rate of its efflux and receptor expression during the cell life cycle. During ischemia, adenosine formed by intracellular ATP escapes from cells through the equilibrative transporter. The protective role of adenosine A1 receptors during ischemia is well accepted. However, the use of selective A1 agonists is hampered by unwanted peripheral effects, thus attention has been focused on A2A and A3 receptors. The protective effects of A2A antagonists in brain ischemia may be largely due to reduced glutamate outflow from neurones and glial cells. Reduced activation of p38 mitogen-activated protein kinases that are involved in neuronal death through transcriptional mechanisms may also contribute to protection by A2A antagonism. Evidence that A3 receptor antagonism may be protective after ischemia is also reported

    Down-Regulation of Glucose-Regulated Protein (GRP) 78 Potentiates Cytotoxic Effect of Celecoxib in Human Urothelial Carcinoma Cells

    Get PDF
    Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor that has been reported to elicit anti-proliferative response in various tumors. In this study, we aim to investigate the antitumor effect of celecoxib on urothelial carcinoma (UC) cells and the role endoplasmic reticulum (ER) stress plays in celecoxib-induced cytotoxicity. The cytotoxic effects were measured by MTT assay and flow cytometry. The cell cycle progression and ER stress-associated molecules were examined by Western blot and flow cytometry. Moreover, the cytotoxic effects of celecoxib combined with glucose-regulated protein (GRP) 78 knockdown (siRNA), (−)-epigallocatechin gallate (EGCG) or MG132 were assessed. We demonstrated that celecoxib markedly reduces the cell viability and causes apoptosis in human UC cells through cell cycle G1 arrest. Celecoxib possessed the ability to activate ER stress-related chaperones (IRE-1α and GRP78), caspase-4, and CCAAT/enhancer binding protein homologous protein (CHOP), which were involved in UC cell apoptosis. Down-regulation of GRP78 by siRNA, co-treatment with EGCG (a GRP78 inhibitor) or with MG132 (a proteasome inhibitor) could enhance celecoxib-induced apoptosis. We concluded that celecoxib induces cell cycle G1 arrest, ER stress, and eventually apoptosis in human UC cells. The down-regulation of ER chaperone GRP78 by siRNA, EGCG, or proteosome inhibitor potentiated the cytotoxicity of celecoxib in UC cells. These findings provide a new treatment strategy against UC

    Adenosine and oxygen/glucose deprivation in the brain

    Get PDF
    corecore