908 research outputs found

    Realization of Artificial Ice Systems for Magnetic Vortices in a Superconducting MoGe Thin-film with Patterned Nanostructures

    Full text link
    We report an anomalous matching effect in MoGe thin films containing pairs of circular holes arranged in such a way that four of those pairs meet at each vertex point of a square lattice. A remarkably pronounced fractional matching was observed in the magnetic field dependences of both the resistance and the critical current. At the half matching field the critical current can be even higher than that at zero field. This has never been observed before for vortices in superconductors with pinning arrays. Numerical simulations within the nonlinear Ginzburg-Landau theory reveal a square vortex ice configuration in the ground state at the half matching field and demonstrate similar characteristic features in the field dependence of the critical current, confirming the experimental realization of an artificial ice system for vortices for the first time.Comment: To appear in Phys. Rev. Let

    Local demands on sterile neutrinos

    Full text link
    In a model independent manner, we explore the local implications of a single neutrino oscillation measurement which cannot be reconciled within a three-neutrino theory. We examine this inconsistency for a single region of baseline to neutrino energy L/EL/E. Assuming that sterile neutrinos account for the anomaly, we find that the {\it local} demands of this datum can require the addition to the theory of one to three sterile neutrinos. We examine the constraints which can be used to determine when more than one neutrino would be required. The results apply only to a given region of L/EL/E. The question of the adequacy of the sterile neutrinos to satisfy a global analysis is not addressed here. Finally, using the results of a 3+2 analysis, we indicate values for unknown mixing matrix elements which would require two sterile neutrinos due to local demands only.Comment: 11 pages, 1 figure, discussion adde

    Enhancing the Critical Current of a Superconducting Film in a Wide Range of Magnetic Fields with a Conformal Array of Nanoscale Holes

    Full text link
    The maximum current (critical current) a type-II superconductor can transmit without energy loss is limited by the motion of the quantized magnetic flux penetrating into a superconductor. Introducing nanoscale holes into a superconducting film has been long pursued as a promising way to increase the critical current. So far the critical current enhancement was found to be mostly limited to low magnetic fields. Here we experimentally investigate the critical currents of superconducting films with a conformal array of nanoscale holes that have non-uniform density while preserving the local ordering. We find that the conformal array of nanoscle holes provides a more significant critical current enhancement at high magnetic fields. The better performance can be attributed to its arching effect that not only gives rise to the gradient in hole-density for pinning vortices with a wide range of densities but also prevent vortex channeling occurring in samples with a regular lattice of holes.Comment: 5 pages, 3 figure

    What Does It Take? California County Funding Requests for Recovery-Oriented Full Service Partnerships Under the Mental Health Services Act

    Get PDF
    The need to move mental health systems toward more recovery-oriented treatment modes is well established. Progress has been made to define needed changes but evidence is lacking about the resources required to implement them. The Mental Health Services Act (MHSA) in California was designed to implement more recovery-oriented treatment modes. We use data from county funding requests and annual updates to examine how counties budgeted for recovery-oriented programs targeted to different age groups under MHSA. Findings indicate that initial per-client budgeting for Full Services Partnerships under MHSA was maintained in future cycles and counties budgeted less per client for children. With this analysis, we begin to benchmark resource allocation for programs that are intended to be recovery-oriented, which should be evaluated against appropriate outcome measures in the future to determine the degree of recovery-orientation

    The New Element Californium (Atomic Number 98)

    Get PDF
    Definite identification has been made of an isotope of the element with atomic number 98 through the irradiation of Cm{sup 242} with about 35-Mev helium ions in the Berkeley Crocker Laboratory 60-inch cyclotron. The isotope which has been identified has an observed half-life of about 45 minutes and is thought to have the mass number 244. The observed mode of decay of 98{sup 244} is through the emission of alpha-particles, with energy of about 7.1 Mev, which agrees with predictions. Other considerations involving the systematics of radioactivity in this region indicate that it should also be unstable toward decay by electron capture. The chemical separation and identification of the new element was accomplished through the use of ion exchange adsorption methods employing the resin Dowex-50. The element 98 isotope appears in the eka-dysprosium position on elution curves containing berkelium and curium as reference points--that is, it precedes berkelium and curium off the column in like manner that dysprosium precedes terbium and gadolinium. The experiments so far have revealed only the tripositive oxidation state of eka-dysprosium character and suggest either that higher oxidation states are not stable in aqueous solutions or that the rates of oxidation are slow. The successful identification of so small an amount of an isotope of element 98 was possible only through having made accurate predictions of the chemical and radioactive properties

    Manipulative therapy and/or NSAIDs for acute low back pain: design of a randomized controlled trial [ACTRN012605000036617]

    Get PDF
    BACKGROUND: Acute low back pain is a common condition resulting in pain and disability. Current national and international guidelines advocate general practitioner care including advice and paracetamol (4 g daily in otherwise well adults) as the first line of care for people with acute low back pain. Non-steroidal anti-inflammatory drugs (NSAIDs) and spinal manipulative therapy (SMT) are advocated in many guidelines as second line management options for patients with acute low back pain who are not recovering. No studies have explored the role of NSAIDs and/or SMT in addition to first line management for acute low back pain. The primary aim of this study is to investigate if NSAIDs and/or SMT in addition to general practitioner advice and paracetamol results in shorter recovery times for patients with acute low back pain. The secondary aims of the study are to evaluate whether the addition of SMT and/or NSAIDs influences pain, disability and global perceived effect at 1, 2, 4 and 12 weeks after onset of therapy for patients with significant acute low back pain. METHODS/DESIGN: This paper presents the rationale and design of a randomised controlled trial examining the addition of NSAIDs and/or SMT in 240 people who present to their general practitioner with significant acute low back pain

    Large Magnetoresistance Oscillations in Mesoscopic Superconductors Due to Current-Excited Moving Vortices

    Full text link
    We show in the case of a superconducting Nb ladder that a mesoscopic superconductor typically exhibits magnetoresistance oscillations whose amplitude and temperature dependence are different from those stemming from the Little-Parks effect. We demonstrate that these large resistance oscillations (as well as the monotonic background on which they are superimposed) are due to {\it current-excited moving vortices}, where the applied current in competition with the oscillating Meissner currents imposes/removes the barriers for vortex motion in increasing magnetic field. Due to the ever present current in transport measurements, this effect should be considered in parallel with the Little-Parks effect in low-TcT_c samples, as well as with recently proposed thermal activation of dissipative vortex-antivortex pairs in high-TcT_c samples

    A Study of the Sediments of Narragansett Bay, Volume 1: The Surface Sediments of Narragansett Bay

    Get PDF
    This report is divided into two volumes. The focus of Volume I is the surface sediments of Narragansett Bay. Volume I contains a study of the surface sediments of Narragansett Bay (Chapter 1), a study of suspended sediments in the northwestern section of the Narragansett Bay System (Chapter 2), a study of the relationship between contaminant concentrations in the surface sediments and soft tissues of the hard clam, Mercenaria mercenaria in Narragansett Bay (Chapter 3), and the results of a side-scan sonar survey of the Providence River dredged channel (Chapter 4). The focus of Volume II is a study of sediment cores from the Narragansett Bay System. Chapter 5 contains the results of geophysical (side-scan and sub-bottom sonar) that support the core studies. The results of studies of sediment cores from Narragansett Bay are contained in Chapter 6, and the results of sediment core studies from its freshwater tributaries (i.e., the Blackstone and Pawtuxet Rivers) are contained in Chapter 7. (Text taken from report preface

    Cancer-specific alterations in nuclear matrix proteins determined by multi-omics analyses of ductal carcinoma in situ

    Get PDF
    IntroductionBreast cancer (BC) is the most common cancer affecting women in the United States. Ductal carcinoma in situ (DCIS) is the earliest identifiable pre-invasive BC lesion. Estimates show that 14 to 50% of DCIS cases progress to invasive BC.MethodsOur objective was to identify nuclear matrix proteins (NMP) with specifically altered expression in DCIS and later stages of BC compared to non-diseased breast reduction mammoplasty and a contralateral breast explant culture using mass spectrometry and RNA sequencing to accurately identify aggressive DCIS.ResultsSixty NMPs were significantly differentially expressed between the DCIS and non-diseased breast epithelium in an isogenic contralateral pair of patient-derived extended explants. Ten of the sixty showed significant mRNA expression level differences that matched the protein expression. These 10 proteins were similarly expressed in non-diseased breast reduction cells. Three NMPs (RPL7A, RPL11, RPL31) were significantly upregulated in DCIS and all other BC stages compared to the matching contralateral breast culture and an unrelated non-diseased breast reduction culture. RNA sequencing analyses showed that these three genes were increasingly upregulated with BC progression. Finally, we identified three NMPs (AHNAK, CDC37 and DNAJB1) that were significantly downregulated in DCIS and all other BC stages compared to the isogenically matched contralateral culture and the non-diseased breast reduction culture using both proteomics and RNA sequencing techniques.DiscussionThese genes should form the basis of, or contribute to, a molecular diagnostic panel that could identify DCIS lesions likely to be indolent and therefore not requiring aggressive treatment

    Topology by Design in Magnetic nano-Materials: Artificial Spin Ice

    Full text link
    Artificial Spin Ices are two dimensional arrays of magnetic, interacting nano-structures whose geometry can be chosen at will, and whose elementary degrees of freedom can be characterized directly. They were introduced at first to study frustration in a controllable setting, to mimic the behavior of spin ice rare earth pyrochlores, but at more useful temperature and field ranges and with direct characterization, and to provide practical implementation to celebrated, exactly solvable models of statistical mechanics previously devised to gain an understanding of degenerate ensembles with residual entropy. With the evolution of nano--fabrication and of experimental protocols it is now possible to characterize the material in real-time, real-space, and to realize virtually any geometry, for direct control over the collective dynamics. This has recently opened a path toward the deliberate design of novel, exotic states, not found in natural materials, and often characterized by topological properties. Without any pretense of exhaustiveness, we will provide an introduction to the material, the early works, and then, by reporting on more recent results, we will proceed to describe the new direction, which includes the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte
    corecore