18 research outputs found

    A novel antigen capture ELISA for the specific detection of IgG antibodies to elephant endotheliotropic herpes virus

    Get PDF
    BACKGROUND Elephants are classified as critically endangered animals by the International Union for Conservation of Species (IUCN). Elephant endotheliotropic herpesvirus (EEHV) poses a large threat to breeding programs of captive Asian elephants by causing fatal haemorrhagic disease. EEHV infection is detected by PCR in samples from both clinically ill and asymptomatic elephants with an active infection, whereas latent carriers can be distinguished exclusively via serological assays. To date, identification of latent carriers has been challenging, since there are no serological assays capable of detecting seropositive elephants. RESULTS Here we describe a novel ELISA that specifically detects EEHV antibodies circulating in Asian elephant plasma/serum. Approximately 80 % of PCR positive elephants display EEHV-specific antibodies. Monitoring three Asian elephant herds from European zoos revealed that the serostatus of elephants within a herd varied from non-detectable to high titers. The antibody titers showed typical herpes-like rise-and-fall patterns in time which occur in all seropositive animals in the herd more or less simultaneously. CONCLUSIONS This study shows that the developed ELISA is suitable to detect antibodies specific to EEHV. It allows study of EEHV seroprevalence in Asian elephants. Results confirm that EEHV prevalence among Asian elephants (whether captive-born or wild-caught) is high

    The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models.

    Get PDF
    BACKGROUND: Melanoma is the most deadly form of skin cancer. Expression of oncogenic BRAF or NRAS, which are frequently mutated in human melanomas, promote the formation of nevi but are not sufficient for tumorigenesis. Even with germline mutated p53, these engineered melanomas present with variable onset and pathology, implicating additional somatic mutations in a multi-hit tumorigenic process. RESULTS: To decipher the genetics of these melanomas, we sequence the protein coding exons of 53 primary melanomas generated from several BRAF(V600E) or NRAS(Q61K) driven transgenic zebrafish lines. We find that engineered zebrafish melanomas show an overall low mutation burden, which has a strong, inverse association with the number of initiating germline drivers. Although tumors reveal distinct mutation spectrums, they show mostly C > T transitions without UV light exposure, and enrichment of mutations in melanogenesis, p53 and MAPK signaling. Importantly, a recurrent amplification occurring with pre-configured drivers BRAF(V600E) and p53-/- suggests a novel path of BRAF cooperativity through the protein kinase A pathway. CONCLUSION: This is the first analysis of a melanoma mutational landscape in the absence of UV light, where tumors manifest with remarkably low mutation burden and high heterogeneity. Genotype specific amplification of protein kinase A in cooperation with BRAF and p53 mutation suggests the involvement of melanogenesis in these tumors. This work is important for defining the spectrum of events in BRAF or NRAS driven melanoma in the absence of UV light, and for informed exploitation of models such as transgenic zebrafish to better understand mechanisms leading to human melanoma formation

    Frequency of LATE neuropathologic change across the spectrum of Alzheimer’s disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts

    Get PDF
    Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer’s disease neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropathologic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal studies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese–American men), United Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% were cognitively normal, 14.9% had MCI, and 42.4% had dementia—broadly consistent with epidemiologic data in this age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with “frequent” neuritic amyloid plaques, 54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive impairment). In the subset of individuals with Thal Aβ phase = 0 (lacking detectable Aβ plaques), the brains with LATE-NC had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neurocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was seen in almost 40% of participants and often, but not always, coexisted with Alzheimer’s disease neuropathology

    A trait-based framework for predicting foodborne pathogen risk from wild birds

    No full text
    Recent foodborne illness outbreaks have heightened pressures on growers to deter wildlife from farms, jeopardizing conservation efforts. However, it remains unclear which species, particularly birds, pose the greatest risk to food safety. Using >11,000 pathogen tests and 1565 bird surveys covering 139 bird species from across the western United States, we examined the importance of 11 traits in mediating wild bird risk to food safety. We tested whether traits associated with pathogen exposure (e.g., habitat associations, movement, and foraging strategy) and pace-of-life (clutch size and generation length) mediated foodborne pathogen prevalence and proclivities to enter farm fields and defecate on crops. Campylobacter spp. were the most prevalent enteric pathogen (8.0%), while Salmonella and Shiga-toxin producing Escherichia coli (STEC) were rare (0.46% and 0.22% prevalence, respectively). We found that several traits related to pathogen exposure predicted pathogen prevalence. Specifically, Campylobacter and STEC-associated virulence genes were more often detected in species associated with cattle feedlots and bird feeders, respectively. Campylobacter was also more prevalent in species that consumed plants and had longer generation lengths. We found that species associated with feedlots were more likely to enter fields and defecate on crops. Our results indicated that canopy-foraging insectivores were less likely to deposit foodborne pathogens on crops, suggesting growers may be able to promote pest-eating birds and birds of conservation concern (e.g., via nest boxes) without necessarily compromising food safety. As such, promoting insectivorous birds may represent a win-win-win for bird conservation, crop production, and food safety. Collectively, our results suggest that separating crop production from livestock farming may be the best way to lower food safety risks from birds. More broadly, our trait-based framework suggests a path forward for co-managing wildlife conservation and food safety risks in farmlands by providing a strategy for holistically evaluating the food safety risks of wild animals, including under-studied species

    Reducing dose omission of prescribed medications in the hospital setting: a narrative review

    No full text
    © 2016, Springer International Publishing Switzerland.Medication error, including dose omission of prescribed medications, can lead to adverse outcomes for hospital patients. Consequently, there is an onus on healthcare staff to understand the causes of these errors and introduce proven methods to prevent their recurrence. This paper presents a review of the literature on the reported causes of, and suggested solutions to, omitted administration of prescribed medications in hospital inpatient settings. Dose omission of prescribed medication has been shown to be one of the commonest causes of medication error in inpatient populations. Unavailable medication, poor communication and poor documentation of administered medications are commonly cited explanations. Institutions have implemented strategies, which have been shown to reduce the incidence of omissions. Such strategies include changing pharmacy processes to ensure medication is available when required; introducing electronic prescribing; encouraging improved communication between healthcare professionals involved in medication management; and educating staff about the importance of administering all prescribed medications, documenting when medications are administered and reporting all medication omissions

    Complex landscapes of somatic rearrangement in human breast cancer genomes.

    Get PDF
    Multiple somatic rearrangements are often found in cancer genomes; however, the underlying processes of rearrangement and their contribution to cancer development are poorly characterized. Here we use a paired-end sequencing strategy to identify somatic rearrangements in breast cancer genomes. There are more rearrangements in some breast cancers than previously appreciated. Rearrangements are more frequent over gene footprints and most are intrachromosomal. Multiple rearrangement architectures are present, but tandem duplications are particularly common in some cancers, perhaps reflecting a specific defect in DNA maintenance. Short overlapping sequences at most rearrangement junctions indicate that these have been mediated by non-homologous end-joining DNA repair, although varying sequence patterns indicate that multiple processes of this type are operative. Several expressed in-frame fusion genes were identified but none was recurrent. The study provides a new perspective on cancer genomes, highlighting the diversity of somatic rearrangements and their potential contribution to cancer development
    corecore