38 research outputs found

    Obesity and Diabetes Cause Cognitive Dysfunction in the Absence of Accelerated β-Amyloid Deposition in a Novel Murine Model of Mixed or Vascular Dementia

    Get PDF
    Mid-life obesity and type 2 diabetes mellitus (T2DM) confer a modest, increased risk for Alzheimer\u27s disease (AD), though the underlying mechanisms are unknown. We have created a novel mouse model that recapitulates features of T2DM and AD by crossing morbidly obese and diabetic db/db mice with APPΔNL/ΔNLx PS1P264L/P264L knock-in mice. These mice (db/AD) retain many features of the parental lines (e.g. extreme obesity, diabetes, and parenchymal deposition of β-amyloid (Aβ)). The combination of the two diseases led to additional pathologies-perhaps most striking of which was the presence of severe cerebrovascular pathology, including aneurysms and small strokes. Cortical Aβ deposition was not significantly increased in the diabetic mice, though overall expression of presenilin was elevated. Surprisingly, Aβ was not deposited in the vasculature or removed to the plasma, and there was no stimulation of activity or expression of major Aβ-clearing enzymes (neprilysin, insulin degrading enzyme, or endothelin-converting enzyme). The db/AD mice displayed marked cognitive impairment in the Morris Water Maze, compared to either db/db or APPΔNLx PS1P264L mice. We conclude that the diabetes and/or obesity in these mice leads to a destabilization of the vasculature, leading to strokes and that this, in turn, leads to a profound cognitive impairment and that this is unlikely to be directly dependent on Aβ deposition. This model of mixed or vascular dementia provides an exciting new avenue of research into the mechanisms underlying the obesity-related risk for age-related dementia, and will provide a useful tool for the future development of therapeutics

    The prevalence, correlation, and co-occurrence of neuropathology in old age: harmonisation of 12 measures across six community-based autopsy studies of dementia

    Get PDF
    Background: Population-based autopsy studies provide valuable insights into the causes of dementia but are limited by sample size and restriction to specific populations. Harmonisation across studies increases statistical power and allows meaningful comparisons between studies. We aimed to harmonise neuropathology measures across studies and assess the prevalence, correlation, and co-occurrence of neuropathologies in the ageing population. Methods: We combined data from six community-based autopsy cohorts in the US and the UK in a coordinated cross-sectional analysis. Among all decedents aged 80 years or older, we assessed 12 neuropathologies known to be associated with dementia: arteriolosclerosis, atherosclerosis, macroinfarcts, microinfarcts, lacunes, cerebral amyloid angiopathy, Braak neurofibrillary tangle stage, Consortium to Establish a Registry for Alzheimer's disease (CERAD) diffuse plaque score, CERAD neuritic plaque score, hippocampal sclerosis, limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and Lewy body pathology. We divided measures into three groups describing level of confidence (low, moderate, and high) in harmonisation. We described the prevalence, correlations, and co-occurrence of neuropathologies. Findings: The cohorts included 4354 decedents aged 80 years or older with autopsy data. All cohorts included more women than men, with the exception of one study that only included men, and all cohorts included decedents at older ages (range of mean age at death across cohorts 88·0–91·6 years). Measures of Alzheimer's disease neuropathological change, Braak stage and CERAD scores, were in the high confidence category, whereas measures of vascular neuropathologies were in the low (arterioloscerosis, atherosclerosis, cerebral amyloid angiopathy, and lacunes) or moderate (macroinfarcts and microinfarcts) categories. Neuropathology prevalence and co-occurrence was high (2443 [91%] of 2695 participants had more than one of six key neuropathologies and 1106 [41%] of 2695 had three or more). Co-occurrence was strongly but not deterministically associated with dementia status. Vascular and Alzheimer's disease features clustered separately in correlation analyses, and LATE-NC had moderate associations with Alzheimer's disease measures (eg, Braak stage ρ=0·31 [95% CI 0·20–0·42]). Interpretation: Higher variability and more inconsistency in the measurement of vascular neuropathologies compared with the measurement of Alzheimer's disease neuropathological change suggests the development of new frameworks for the measurement of vascular neuropathologies might be helpful. Results highlight the complexity and multi-morbidity of the brain pathologies that underlie dementia in older adults and suggest that prevention efforts and treatments should be multifaceted. Funding: Gates Ventures

    Frequency of LATE neuropathologic change across the spectrum of Alzheimer’s disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts

    Get PDF
    Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer’s disease neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropathologic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal studies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese–American men), United Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% were cognitively normal, 14.9% had MCI, and 42.4% had dementia—broadly consistent with epidemiologic data in this age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with “frequent” neuritic amyloid plaques, 54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive impairment). In the subset of individuals with Thal Aβ phase = 0 (lacking detectable Aβ plaques), the brains with LATE-NC had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neurocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was seen in almost 40% of participants and often, but not always, coexisted with Alzheimer’s disease neuropathology

    LATE-NC staging in routine neuropathologic diagnosis : an update

    Get PDF
    An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.Peer reviewe

    Octaarginine Labelled 30 nm Gold Nanoparticles as Agents for Enhanced Radiotherapy

    No full text
    Traditional radiation therapy is limited by the radiotoxic effects on surrounding healthy tissues. This project investigated the use of a gold nanoparticle (AuNP) conjugated to a cell-penetrating peptide (CPP) to increase tumour cell death during radiotherapy by maximizing the cellular import of the gold nanoparticles. ~8300 octaarginine CPPs were coupled per 30 nm AuNP through poly(ethylene glycol) spacers (AuNP-PEG-CPP). The CPPs enhanced the internalization of the AuNPs into three human breast cancer cell lines by a factor >2 as compared to untargeted AuNPs. Cells were treated with AuNP-PEG-CPP for 24 hours, prior to radiotherapy and their long-term proliferation was assessed in clonogenic assays. The increased internalization of AuNPs by the CPPs resulted in greater cell death following exposure to 300 kVp radiotherapy, by a dose enhancement factors between 1.3 and 2.1 depending on the cell line. These findings illustrate the potential of using AuNP-CPPs to enhance radiotherapy in patients.MAS

    Characteristics and Predictors of Alzheimer’s Disease Resilience Phenotype

    No full text
    Alzheimer’s disease (AD) is characterized by cognitive impairment in the presence of cerebral amyloid plaques and neurofibrillary tangles. Less is known about the characteristics and predictors of resilience to cognitive impairment in the presence of neuropathological evidence of AD, the focus of this study. Of 3170 adults age ≥65 years in the National Alzheimer’s Coordinating Center (NACC) brain autopsy cohort, 1373 had evidence of CERAD level moderate to frequent neuritic plaque density and Braak stage V–VI neurofibrillary tangles. Resilience was defined by CDR-SOB and CDR-Global scores of 0–2.5 and 0–0.5, respectively, and non-resilience, CDR-SOB and CDR-Global scores >2.5 and >0.5, respectively. Multivariable logistic regression models were used to examine the independent associations of patient characteristics with resilience. There were 62 participants (4.8%) with resilience. Those with resilience were older (mean age, 88.3 vs. 82.4 years), more likely to be women (61.3% vs. 47.3%) and had a lower prevalence of the APOE-e4 carrier (41.9% vs. 56.2%). They also had a higher prevalence of hypertension, heart failure, atrial fibrillation, diuretic use, beta-blocker use, and APOE-e2 carrier status. Greater age at death, diuretic use, and APOE-e2 were the only characteristics independently associated with higher odds of the AD resilience phenotype (adjusted OR, 1.09; 95% CI, 1.05–1.13; p p = 0.04, 2.71 (1.31–5.64), p < 0.01, respectively). The phenotype of resilience to cognitive impairment is uncommon in older adults who have neuropathological evidence of AD

    Hypertension and Alzheimer's disease pathology at autopsy: A systematic review

    No full text
    Hypertension is an important risk factor for Alzheimer's disease (AD) and all-cause dementia. The mechanisms underlying this association are unclear. Hypertension may be associated with AD neuropathological changes (ADNC), but reports are sparse and inconsistent. This systematic review included 15 autopsy studies (n = 5879) from observational cohorts. Studies were highly heterogeneous regarding populations, follow-up duration, hypertension operationalization, neuropathological methods, and statistical analyses. Hypertension seems associated with higher plaque and tangle burden, but results are inconsistent. Four studies (n = 3993/5879; 68%), reported clear associations between hypertension and ADNC. Another four suggested that antihypertensive medication may protect against ADNC. Larger studies with longer follow-up reported the strongest relationships. Our findings suggest a positive association between hypertension and ADNC, but effects may be modest, and possibly attenuate with higher hypertension age and antihypertensive medication use. Investigating interactions among plaques, tangles, cerebrovascular pathology, and dementia may be key in better understanding hypertension's role in dementia development

    Cross species application of quantitative neuropathology assays developed for clinical Alzheimer’s disease samples

    Get PDF
    A major obstacle for preclinical testing of Alzheimer's disease (AD) therapies is the availability of translationally relevant AD models. Critical for the validation of such models is the application of the same approaches and techniques used for the neuropathological characterization of AD. Deposition of amyloid-β 42 (Aβ42) plaques and neurofibrillary tangles containing phospho-Tau (pTau) are the pathognomonic features of AD. In the neuropathologic evaluation of AD, immunohistochemistry (IHC) is the current standard method for detection of Aβ42 and pTau. Although IHC is indispensable for determining the distribution of AD pathology, it is of rather limited use for assessment of the quantity of AD pathology. We have recently developed Luminex-based assays for the quantitative assessment of Aβ42 and pTau in AD brains. These assays are based on the same antibodies that are used for the IHC-based diagnosis of AD neuropathologic change. Here we report the application and extension of such quantitative AD neuropathology assays to commonly used genetically engineered AD models and to animals that develop AD neuropathologic change as they age naturally. We believe that identifying AD models that have Aβ42 or pTau levels comparable to those observed in AD will greatly improve the ability to develop AD therapies. Abbreviations: Alzheimer's disease (AD); amyloid β 42 (Aβ42); phospho-Tau (pTau); immunohistochemistry (IHC)

    OPAL: a randomised, placebo-controlled trial of opioid analgesia for the reduction of pain severity in people with acute spinal pain—a statistical analysis plan

    Get PDF
    Background: Low back and neck pain are a leading cause of disease burden globally. Opioids are recommended in guidelines for acute low back and neck pain; however, there is a lack of compelling efficacy data to support this. Methods: The OPAL trial is a prospectively registered, triple-blinded, randomised, placebo-controlled trial. Patients with acute (≤12 weeks duration) back and/or neck pain receive guideline care plus either an opioid (oxycodone + naloxone, up to 20 mg per day) or a placebo for up to 6 weeks or earlier, if pain is resolved. The primary outcome is pain measured using the Pain Severity Score of the Brief Pain Inventory with the primary time point being 6 weeks. Secondary outcomes include physical function, time to recovery, quality of life, adverse events and risk of opioid misuse. Outcomes are collected at weeks 2, 4, 6, 12, 26 and 52. Analysis will be done on an intention-to-treat principle. p values of < 0.05 will be considered significant and 95% confidence intervals will be reported. Repeated-measures linear mixed models will be used to assess the effect of the treatment group on the primary outcome and continuous secondary outcomes. Adverse events will be compared between groups using Fisher’s exact test. Cost-effectiveness analyses will be conducted if a treatment effect on pain is seen at week 6. Subgroup analyses will be performed to assess whether pain duration and pain location are treatment effect modifiers. Discussion: The OPAL trial will provide important evidence about whether a short course of opioids is effective in the treatment of acute non-specific low back and/or neck pain. This pre-specified statistical analysis plan details the methodology for the analysis of the OPAL trial results. Trial registration: ACTRN12615000775516. The trial has completed recruitment. Follow-up on the last patient will be completed in March 2022
    corecore