582 research outputs found

    Density Controlled Divide-and-Rule Scheme for Energy Efficient Routing in Wireless Sensor Networks

    Full text link
    Cluster based routing technique is most popular routing technique in Wireless Sensor Networks (WSNs). Due to varying need of WSN applications efficient energy utilization in routing protocols is still a potential area of research. In this research work we introduced a new energy efficient cluster based routing technique. In this technique we tried to overcome the problem of coverage hole and energy hole. In our technique we controlled these problems by introducing density controlled uniform distribution of nodes and fixing optimum number of Cluster Heads (CHs) in each round. Finally we verified our technique by experimental results of MATLAB simulations.Comment: 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE2013), Regina, Saskatchewan, Canada, 201

    On Energy Efficiency and Delay Minimization in Reactive Protocols in Wireless Multi-hop Networks

    Full text link
    In Wireless Multi-hop Networks (WMhNs), routing protocols with energy efficient and delay reduction techniques are needed to fulfill users demands. In this paper, we present Linear Programming models (LP_models) to assess and enhance reactive routing protocols. To practically examine constraints of respective LP_models over reactive protocols, we select AODV, DSR and DYMO. It is deduced from analytical simulations of LP_models in MATLAB that quick route repair reduces routing latency and optimizations of retransmission attempts results efficient energy utilization. To provide quick repair, we enhance AODV and DSR. To practically examine the efficiency of enhanced protocols in different scenarios of WMhNs, we conduct simulations using NS- 2. From simulation results, enhanced DSR and AODV achieve efficient output by optimizing routing latencies and routing load in terms of retransmission attempts

    HEER: Hybrid Energy Efficient Reactive Protocol for Wireless Sensor Networks

    Full text link
    Wireless Sensor Networks (WSNs) consist of numerous sensors which send sensed data to base station. Energy conservation is an important issue for sensor nodes as they have limited power.Many routing protocols have been proposed earlier for energy efficiency of both homogeneous and heterogeneous environments. We can prolong our stability and network lifetime by reducing our energy consumption. In this research paper, we propose a protocol designed for the characteristics of a reactive homogeneous WSNs, HEER (Hybrid Energy Efficient Reactive) protocol. In HEER, Cluster Head(CH) selection is based on the ratio of residual energy of node and average energy of network. Moreover, to conserve more energy, we introduce Hard Threshold (HT) and Soft Threshold (ST). Finally, simulations show that our protocol has not only prolonged the network lifetime but also significantly increased stability period.Comment: 2nd IEEE Saudi International Electronics, Communications and Photonics Conference (SIECPC 13), 2013, Riyadh, Saudi Arabi

    Performance Analysis of Hierarchical Routing Protocols in Wireless Sensor Networks

    Full text link
    This work focusses on analyzing the optimization strategies of routing protocols with respect to energy utilization of sensor nodes in Wireless Sensor Network (WSNs). Different routing mechanisms have been proposed to address energy optimization problem in sensor nodes. Clustering mechanism is one of the popular WSNs routing mechanisms. In this paper, we first address energy limitation constraints with respect to maximizing network life time using linear programming formulation technique. To check the efficiency of different clustering scheme against modeled constraints, we select four cluster based routing protocols; Low Energy Adaptive Clustering Hierarchy (LEACH), Threshold Sensitive Energy Efficient sensor Network (TEEN), Stable Election Protocol (SEP), and Distributed Energy Efficient Clustering (DEEC). To validate our mathematical framework, we perform analytical simulations in MATLAB by choosing number of alive nodes, number of dead nodes, number of packets and number of CHs, as performance metrics.Comment: NGWMN with 7th IEEE International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA 2012), Victoria, Canada, 201

    Duplex PCR assay for the detection of avian adeno virus and chicken anemia virus prevalent in Pakistan

    Get PDF
    Avian Adeno viruses and Chicken Anemia Viruses cause serious economic losses to the poultry industry of Pakistan each year. Timely and efficient diagnosis of the viruses is needed in order to practice prevention and control strategies. In the first part of this study, we investigated broilers, breeder and Layer stocks for morbidity and mortality rates due to AAV and CAV infections and any co-infections by examining signs and symptoms typical of their infestation or post mortem examination. In the second part of the study, we developed a duplex PCR assay for the detection of AAV and CAV which is capable to simultaneously detect both the viral types prevalent in Pakistan with high sensitivity and 100% specificity

    Prevalence of active HCV infection among the blood donors of Khyber Pakhtunkwa and FATA region of Pakistan and evaluation of the screening tests for anti-HCV

    Get PDF
    Hepatitis C is a fatal liver disease caused by the hepatitis C virus. In this study, blood donors, from various districts of the KPK province and the federally administered tribal area (FATA) of Pakistan were tested for anti-HCV antibodies and HCV RNA by ICT (Immuno-chromatographic test), ELISA and RT-PCR. Out of the 7148 blood donors, 224 (3.13%) were positive for anti-HCV antibodies by ICT, 135 (1.89%) by ELISA while 118 (1.65%) blood donors had active HCV infection as detected by RT-PCR. We suggest that ELISA should be used for anti-HCV screening in public sector hospitals and health care units

    Tunable indium tin oxide thin film as saturable absorber for generation of passively Q-switched pulse erbium-doped fiber laser

    Get PDF
    A tunable Q-switched pulse erbium-doped fiber (EDF) laser using indium tin oxide (ITO) thin-film-based saturable absorber (SA) is proposed and demonstrated. The SA is formed by depositing an ITO layer using DC magnetron sputtering on the fiber ferrule, which can be easily fabricated in less than 200 s with thickness of 17.80 nm. The proposed tunable Q-switched pulse EDF laser is operated from 1540.0 to 1570.0 nm, covering a total wavelength of 30.0 nm. The generated output pulses displayed a repetition rate range between 21.70 and 94.34 kHz. The shortest pulse width retrieved is 3.22 ls at the maximum pump power of 378.6 mW, while the maximum pulse energy recorded is 30.29 nJ. To the best of the authors’ knowledge, this appears to be the first proposed tunable passively Q-switched pulse EDF laser using ITO that serves as SA, which can promote ITO film in the application of ultrafast photonics
    corecore