31 research outputs found

    Local reduced-density-matrix-functional theory: Incorporating static correlation effects in Kohn-Sham equations

    Get PDF
    We propose a novel scheme to bring reduced density matrix functional theory (RDMFT) into the realm of density functional theory (DFT) that preserves the accurate density functional description at equilibrium, while incorporating accurately static and left-right correlation effects in molecules and keeping the good computational performance of DFT-based schemes. The key ingredient is to relax the requirement that the local potential is the functional derivative of the energy with respect to the density. Instead, we propose to restrict the search for the approximate natural orbitals within a domain where these orbitals are eigenfunctions of a single-particle hamiltonian with a local effective potential. In this way, fractional natural occupation numbers are accommodated into Kohn-Sham equations allowing for the description of molecular dissociation without breaking spin symmetry. Additionally, our scheme provides a natural way to connect an energy eigenvalue spectrum to the approximate natural orbitals and this spectrum is found to represent accurately the ionization potentials of atoms and small molecules

    Conditions for describing triplet states in reduced density matrix functional theory

    Full text link
    We consider necessary conditions for the one-body-reduced density matrix (1RDM) to correspond to a triplet wave-function of a two electron system. The conditions concern the occupation numbers and are different for the high spin projections, Sz=±1S_z=\pm 1, and the Sz=0S_z=0 projection. Hence, they can be used to test if an approximate 1RDM functional yields the same energies for both projections. We employ these conditions in reduced density matrix functional theory calculations for the triplet excitations of two-electron systems. In addition, we propose that these conditions can be used in the calculation of triplet states of systems with more than two electrons by restricting the active space. We assess this procedure in calculations for a few atomic and molecular systems. We show that the quality of the optimal 1RDMs improves by applying the conditions in all the cases we studied

    Generalized Pauli constraints in reduced density matrix functional theory

    Full text link
    Functionals of the one-body reduced density matrix (1-RDM) are routinely minimized under Coleman's ensemble NN-representability conditions. Recently, the topic of pure-state NN-representability conditions, also known as generalized Pauli constraints, received increased attention following the discovery of a systematic way to derive them for any number of electrons and any finite dimensionality of the Hilbert space. The target of this work is to assess the potential impact of the enforcement of the pure-state conditions on the results of reduced density-matrix functional theory calculations. In particular, we examine whether the standard minimization of typical 1-RDM functionals under the ensemble NN-representability conditions violates the pure-state conditions for prototype 3-electron systems. We also enforce the pure-state conditions, in addition to the ensemble ones, for the same systems and functionals and compare the correlation energies and optimal occupation numbers with those obtained by the enforcement of the ensemble conditions alone

    Density inversion method for local basis sets without potential auxiliary functions: inverting densities from RDMFT

    Get PDF
    A density inversion method is presented, to obtain the constrained, optimal, local potential that has a prescribed asymptotic behaviour and reproduces optimally any given ground-state electronic density. This work builds upon the method of [Callow et al., J. Chem. Phys., 2020, 152, 164114.] and differs in the expansion of the screening density in orbital basis element products instead of basis functions of an additional auxiliary set. We demonstrated the method by applying it to densities from DFT, Hartree–Fock, CAS-SCF and RDMFT calculations. For RDMFT, we demonstrate that density inversion offers a viable single-particle description by comparing the ionization potentials for atomic and molecular systems to the corresponding experimental values. Finally, we show that with the present method, accurate correlation potentials can be obtained from the inversion of accurate densities

    Relating correlation measures: the importance of the energy gap

    Full text link
    The concept of correlation is central to all approaches that attempt the description of many-body effects in electronic systems. Multipartite correlation is a quantum information theoretical property that is attributed to quantum states independent of the underlying physics. In quantum chemistry, however, the correlation energy (the energy not seized by the Hartree-Fock ansatz) plays a more prominent role. We show that these two different viewpoints on electron correlation are closely related. The key ingredient turns out to be the energy gap within the symmetry-adapted subspace. We then use a few-site Hubbard model and the stretched H2_2 to illustrate this connection and to show how the corresponding measures of correlation compare.Comment: 6 pages, 3 figure
    corecore