49 research outputs found

    Regulation of glucose homeostasis by Doc2b and Munc18 proteins.

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Glucose homeostasis is maintained through the coordinated actions of insulin secretion from pancreatic beta cells and insulin action in peripheral tissues. Dysfunction of insulin action yields insulin resistance, and when coupled with altered insulin secretion, results in type 2 diabetes (T2D). Exocytosis of intracellular vesicles, such as insulin granules and glucose transporter (GLUT4) vesicles is carried out by similar SNARE (soluble NSF attachment receptor) protein isoforms and Munc18 proteins. An additional regulatory protein, Doc2b, was implicated in the regulation of these particular exocytosis events in clonal cell lines, but relevance of Doc2b in the maintenance of whole body glucose homeostasis in vivo remained unknown. The objective of my doctoral work was to delineate the mechanisms underlying regulation of insulin secretion and glucose uptake by Doc2b in effort to identify new therapeutic targets within these processes for the prevention and/or treatment of T2D. Towards this, mice deficient in Doc2b (Doc2b-/- knockout mice) were assessed for in vivo alterations in glucose homeostasis. Doc2b knockout mice were highly susceptible to preclinical T2D, exhibiting significant whole-body glucose intolerance related to insulin secretion insufficiency as well as peripheral insulin resistance. These phenotypic defects were accounted for by defects in assembly of SNARE complexes. Having determined that Doc2b was required in the control over whole body glycemia in vivo, whether Doc2b is also limiting for these mechanisms in vivo was examined. To study this, novel Doc2b transgenic (Tg) mice were engineered to express ~3 fold more Doc2b exclusively in pancreas, skeletal muscle and fat tissues. Compared to normal littermate mice, Doc2b Tg mice had improved glucose tolerance, related to concurrent enhancements in insulin mumsecretion from beta cells and insulin-stimulated glucose uptake in the skeletal muscle. At the molecular level, Doc2b overexpression promoted SNARE complex assembly, increasing exocytotic capacities in both cellular processes. These results unveiled the concept that intentional elevation of Doc2b could provide a means of mitigating two primary aberrations underlying T2D development

    Doc2b enrichment enhances glucose homeostasis in mice via potentiation of insulin secretion and peripheral insulin sensitivity.

    Get PDF
    AIMS/HYPOTHESIS: Insulin secretion from pancreatic beta cells and insulin-stimulated glucose uptake into skeletal muscle are processes regulated by similar isoforms of the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) and mammalian homologue of unc-18 (Munc18) protein families. Double C2 domain β (Doc2b), a SNARE- and Munc18-interacting protein, is implicated as a crucial effector of glycaemic control. However, whether Doc2b is naturally limiting for these processes, and whether Doc2b enrichment might exert a beneficial effect upon glycaemia in vivo, remains undetermined. METHODS: Tetracycline-repressible transgenic (Tg) mice engineered to overexpress Doc2b simultaneously in the pancreas, skeletal muscle and adipose tissues were compared with wild-type (Wt) littermate mice regarding glucose and insulin tolerance, islet function in vivo and ex vivo, and skeletal muscle GLUT4 accumulation in transverse tubule/sarcolemmal surface membranes. SNARE complex formation was further assessed using Doc2b overexpressing L6-GLUT4-myc myoblasts to derive mechanisms relatable to physiological in vivo analyses. RESULTS: Doc2b Tg mice cleared glucose substantially faster than Wt mice, correlated with enhancements in both phases of insulin secretion and peripheral insulin sensitivity. Heightened peripheral insulin sensitivity correlated with elevated insulin-stimulated GLUT4 vesicle accumulation in cell surface membranes of Doc2b Tg mouse skeletal muscle. Mechanistic studies demonstrated Doc2b enrichment to enhance syntaxin-4-SNARE complex formation in skeletal muscle cells. CONCLUSIONS/INTERPRETATION: Doc2b is a limiting factor in SNARE exocytosis events pertinent to glycaemic regulation in vivo. Doc2b enrichment may provide a novel means to simultaneously boost islet and skeletal muscle function in vivo in the treatment and/or prevention of diabetes

    Pride and prejudice of legal imperialism with reference to presevering English law in Malaysia: making sense the doctrines of reception and subsequent attraction

    Get PDF
    The benefit of the British Empire was that by the 18th Century, English Law was already well settled in the Malay Peninsular and it was relatively easy to determine which laws that can be received and applied. In light of the above, this chapter reviews the history of English law in Malay Peninsular with special focus on why the need to review ss. 3 and 5 of the Civil Law Act 1956, which relates to the current application of English Law in Malays

    Pride and prejudice of legal imperialism and with reference to preserving English law in Malaysia: making sense of the doctrines of reception and subsequent attraction

    Get PDF
    A perusal of historical records of Penang, before the island was colonised by the East India Company, shows that the island was inhabited by some Malays and was already the playing ground of the Kedah royalties.6 Therefore, to argue that English law in Penang was ‘settled law’ would be inaccurate and contrary to the above established facts. Interestingly, the evolution of the law is seen during the British empire by taking on colonies and clearly it was to ensure that the heritage of the English law will live on and hence, making English law the law of the colony. The benefit of the British Empire was that by the 18th Century, English’s Law was already well settled in the Malay Peninsular and it was relatively easy to determine which laws that can be received and applied. In light of the above, this article reviews the history of English law in Malay Peninsular with special focus on why the need to review ss 3 and 5 of the Civil Law Act 1956,7 which relates to the current application of English Law in Malaysi

    Doc2b serves as a scaffolding platform for concurrent binding of multiple Munc18 isoforms in pancreatic islet β-cells

    Get PDF
    Biphasic glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells involves soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) protein-regulated exocytosis. SNARE complex assembly further requires the regulatory proteins Munc18c, Munc18-1 and Doc2b. Munc18-1 and Munc18c are required for first- and second-phase GSIS respectively. These distinct Munc18-1 and Munc18c roles are related to their transient high-affinity binding with their cognate target (t-)SNAREs, Syntaxin 1A and Syntaxin 4 respectively. Doc2b is essential for both phases of GSIS, yet the molecular basis for this remains unresolved. Because Doc2b binds to Munc18-1 and Munc18c via its distinct C2A and C2B domains respectively, we hypothesized that Doc2b may provide a plasma membrane-localized scaffold/platform for transient docking of these Munc18 isoforms during GSIS. Towards this, macromolecular complexes composed of Munc18c, Doc2b and Munc18-1 were detected in β-cells. In vitro interaction assays indicated that Doc2b is required to bridge the interaction between Munc18c and Munc18-1 in the macromolecular complex; Munc18c and Munc18-1 failed to associate in the absence of Doc2b. Competition-based GST-Doc2b interaction assays revealed that Doc2b could simultaneously bind both Munc18-1 and Munc18c. Hence these data support a working model wherein Doc2b functions as a docking platform/scaffold for transient interactions with the multiple Munc18 isoforms operative in insulin release, promoting SNARE assembly

    Munc18c: a controversial regulator of peripheral insulin action

    Get PDF
    Insulin resistance, a hallmark of impaired glucose tolerance and type 2 diabetes (T2D), arises from dysfunction of insulin action and subsequent glucose uptake by peripheral tissues, predominantly skeletal muscle and fat. Exocytosis of glucose transporter (GLUT4)-containing vesicles facilitated by soluble NSF (N-ethylmaleimide-sensitive factor) attachment receptor (SNARE) protein isoforms, and Munc18c (mammalian homolog of Unc-18c) mediates this glucose uptake. Emerging evidences, including recent human clinical studies, point to pivotal roles for Munc18c in peripheral insulin action in adipose and skeletal muscle. Intriguing new advances are also initiating debates regarding the molecular mechanism(s) controlling Munc18c action. The objective of this review is therefore to present a balanced perspective of new continuities and controversies surrounding the regulation and requirement for Munc18c in the regulation of peripheral insulin action

    Signaling of the p21-activated kinase (PAK1) coordinates insulin-stimulated actin remodeling and glucose uptake in skeletal muscle cells

    Get PDF
    Skeletal muscle accounts for ~80% of postprandial glucose clearance, and skeletal muscle glucose clearance is crucial for maintaining insulin sensitivity and euglycemia. Insulin-stimulated glucose clearance/uptake entails recruitment of glucose transporter 4 (GLUT4) to the plasma membrane (PM) in a process that requires cortical F-actin remodeling; this process is dysregulated in Type 2 Diabetes. Recent studies have implicated PAK1 as a required element in GLUT4 recruitment in mouse skeletal muscle in vivo, although its underlying mechanism of action and requirement in glucose uptake remains undetermined. Toward this, we have employed the PAK1 inhibitor, IPA3, in studies using L6-GLUT4-myc muscle cells. IPA3 fully ablated insulin-stimulated GLUT4 translocation to the PM, corroborating the observation of ablated insulin-stimulated GLUT4 accumulation in the PM of skeletal muscle from PAK1−/− knockout mice. IPA3-treatment also abolished insulin-stimulated glucose uptake into skeletal myotubes. Mechanistically, live-cell imaging of myoblasts expressing the F-actin biosensor LifeAct-GFP treated with IPA3 showed blunting of the normal insulin-induced cortical actin remodeling. This blunting was underpinned by a loss of normal insulin-stimulated cofilin dephosphorylation in IPA3-treated myoblasts. These findings expand upon the existing model of actin remodeling in glucose uptake, by placing insulin-stimulated PAK1 signaling as a required upstream step to facilitate actin remodeling and subsequent cofilin dephosphorylation. Active, dephosphorylated cofilin then provides the G-actin substrate for continued F-actin remodeling to facilitate GLUT4 vesicle translocation for glucose uptake into the skeletal muscle cell

    The p21-activated kinase (PAK1) is involved in diet-induced beta cell mass expansion and survival in mice and human islets

    Get PDF
    AIMS/HYPOTHESIS: Human islets from type 2 diabetic donors are reportedly 80% deficient in the p21 (Cdc42/Rac)-activated kinase, PAK1. PAK1 is implicated in beta cell function and maintenance of beta cell mass. We questioned the mechanism(s) by which PAK1 deficiency potentially contributes to increased susceptibility to type 2 diabetes. METHODS: Non-diabetic human islets and INS 832/13 beta cells cultured under diabetogenic conditions (i.e. with specific cytokines or under glucolipotoxic [GLT] conditions) were evaluated for changes to PAK1 signalling. Combined effects of PAK1 deficiency with GLT stress were assessed using classic knockout (Pak1 (-/-) ) mice fed a 45% energy from fat/palmitate-based, 'western' diet (WD). INS 832/13 cells overexpressing or depleted of PAK1 were also assessed for apoptosis and signalling changes. RESULTS: Exposure of non-diabetic human islets to diabetic stressors attenuated PAK1 protein levels, concurrent with increased caspase 3 cleavage. WD-fed Pak1 knockout mice exhibited fasting hyperglycaemia and severe glucose intolerance. These mice also failed to mount an insulin secretory response following acute glucose challenge, coinciding with a 43% loss of beta cell mass when compared with WD-fed wild-type mice. Pak1 knockout mice had fewer total beta cells per islet, coincident with decreased beta cell proliferation. In INS 832/13 beta cells, PAK1 deficiency combined with GLT exposure heightened beta cell death relative to either condition alone; PAK1 deficiency resulted in decreased extracellular signal-related kinase (ERK) and B cell lymphoma 2 (Bcl2) phosphorylation levels. Conversely, PAK1 overexpression prevented GLT-induced cell death. CONCLUSIONS/INTERPRETATION: These findings suggest that PAK1 deficiency may underlie an increased diabetic susceptibility. Discovery of ways to remediate glycaemic dysregulation via altering PAK1 or its downstream effectors offers promising opportunities for disease intervention

    Force Majeure Clause in Employment Contracts: Its Relevance in Malaysian Industrial Jurisprudence

    Get PDF
    If a pandemic such as Covid-19 is once again contemplated, the future contract of employment may be leading to the recognition of the force majeure clause. Current legal scenario to include the force majeure clause in contract of employment must examine the recognition and applicability of the clause by the legislature. Can an obligation be imposed on the both parties be just and equitable in that the party relying on the clause will have to give reasonable notice to the other party in event the contract becomes impossible to perform and what would be the compensation allowable to the other party
    corecore