9 research outputs found

    A high-fat meal impairs muscle vasodilatation response to mental stress in humans with Glu27 β2-adrenoceptor polymorphism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forearm blood flow responses during mental stress are greater in individuals homozygous for the Glu27 allele. A high-fat meal is associated with impaired endothelium-dependent dilatation. We investigated the impact of high-fat ingestion on the muscle vasodilatory responses during mental stress in individuals with the Glu27 allele and those with the Gln27 allele of the β<sub>2</sub>-adrenoceptor gene.</p> <p>Methods</p> <p>A total of 162 preselected individuals were genotyped for the Glu27Gln β<sub>2</sub>-adrenoceptor polymorphism. Twenty-four individuals participated in the study. Fourteen were homozygous for the Gln27 allele (Gln27Gln, 40 ± 2 years; 64 ± 2 kg), and 10 were homozygous for the Glu27 allele (Glu27Glu, 40 ± 3 years; 65 ± 3 kg). Forearm blood flow was evaluated by venous occlusion plethysmography before and after ingestion of 62 g of fat.</p> <p>Results</p> <p>The high-fat meal caused no changes in baseline forearm vascular conductance (FVC, 2.2 ± 0.1 vs. 2.4 ± 0.2; <it>P </it>= 0.27, respectively), but reduced FVC responses to mental stress (1.5 ± 0.2 vs. 0.8 ± 0.2 units; <it>P </it>= 0.04). When volunteers were divided according to their genotypes, baseline FVC was not different between groups (Glu27Glu = 2.4 ± 0.1 vs. Gln27Gln = 2.1 ± 0.1 units; <it>P </it>= 0.08), but it was significantly greater in Glu27Glu individuals during mental stress (1.9 ± 0.4 vs. 1.0 ± 0.3 units; <it>P </it>= 0.04). High-fat intake eliminated the difference in FVC responses between Glu27Glu and Gln27Gln individuals (FVC, 1.3 ± 0.4 vs. 1.2 ± 0.4; <it>P </it>= 0.66, respectively).</p> <p>Conclusion</p> <p>These findings demonstrate that a high-fat meal impairs muscle vasodilatation responses to mental stress in humans. However, this reduction can be attributed to the presence of the homozygous Glu27 allele of the β<sub>2</sub>-adrenoceptor gene.</p

    Hemodynamics and cardiac autonomic modulation after an acute concurrent exercise circuit in older individuals with pre- to established hypertension

    Get PDF
    OBJECTIVES: Few studies have investigated whether post-exercise hypotension (PEH) after concurrent exercise (CEX) is related to changes in cardiac output (Q) and systemic vascular resistance (SVR) in older individuals. We tested whether PEH after a single bout of CEX circuits performed in open-access facilities at the Third Age Academies (TAA) in Rio de Janeiro City (Brazil) would be concomitant with decreased Q and SVR in individuals aged X60 years with prehypertension. Moreover, we assessed autonomic modulation as a potential mechanism underlying PEH. METHODS: Fourteen individuals (age, 65.8±0.9 y; systolic/diastolic blood pressure [SBP/DBP], 132.4±12.1/72.8± 10.8 mmHg; with half of the patients taking antihypertensive medications) had their blood pressure (BP), heart rate (HR), Q, SVR, HR variability (HRV), and spontaneous baroreflex sensitivity (BRS) recorded before and 50 min after CEX (40-min circuit, including seven stations of alternate aerobic/resistance exercises at 60–70% HR reserve) and non-exercise control (CONT) sessions. The study protocol was registered in a World Health Organization-accredited office (Trial registration RBR-7BWVPJ). RESULTS: SBP (D= 14.2±13.1 mmHg, p=0.0001), DBP (D= 5.2±8.2 mmHg, p= 0.04), Q (D= 2.2±1.5 L/min, p=0.0001), and BRS (D= 3.5±2.6 ms/mmHg; p=0.05) decreased after CEX as compared with the CONT session. By contrast, the HR increased (D=9.4±7.2 bpm, po0.0001), and SVR remained stable throughout the postexercise period as compared with the CONT session (D=0.10±0.22 AU, p=0.14). We found no significant difference between the CEX and CONT with respect to the HRV indexes reflecting autonomic modulation. CONCLUSION: CEX induced PEH in the older individuals with prehypertension status. At least in the first 50 min, PEH occurred parallel to the decreased Q and increased HR, while SVR was not different. The changes in autonomic outflow appeared to be unrelated to the acute cardiac and hemodynamic responses

    Cardiac autonomic dysfunction in obese normotensive children and adolescents

    No full text
    OBJECTIVE:To test the hypothesis that obese normotensive children and adolescents present impaired cardiac autonomic control compared to non-obese normotensive ones.METHODS:For this cross-sectional study, 66 children and adolescents were divided into the following groups: Obese (n=31, 12±3 years old) and Non-Obese (n=35, 13±3 years old). Obesity was defined as body mass index greater than the 95thpercentile for age and gender. Blood pressure was measured by oscillometric method after 15 minutes of rest in supine position. The heart rate was continuously registered during ten minutes in the supine position with spontaneous breathing. The cardiac autonomic control was assessed by heart rate variability, which was calculated from the five-minute minor variance of the signal. The derivations were the index that indicates the proportion of the number of times in which normal adjacent R-R intervals present differences >50 miliseconds (pNN50), for the time domain, and, for the spectral analysis, low (LF) and high frequency (HF) bands, besides the low and high frequencies ratio (LF/HF). The results were expressed as mean±standard deviation and compared by Student's t-test or Mann-Whitney's U-test.RESULTS: Systolic blood pressure (116±14 versus 114±13mmHg, p=0.693) and diastolic blood pressure (59±8 versus 60±11mmHg, p=0.458) were similar between the Obese and Non-Obese groups. The pNN50 index (29±21 versus 43±23, p=0.015) and HF band (54±20 versus 64±14 normalized units - n.u., p=0.023) were lower in the Obese Group. The LF band (46±20 versus 36±14 n.u., p=0.023) and LF/HF ratio (1.3±1.6 versus 0.7±0.4, p=0.044) were higher in Obese Group.CONCLUSIONS: Obese normotensive children and adolescents present impairment of cardiac autonomic control
    corecore