6 research outputs found

    Toll-like receptor-4 expression by hepatic progenitor cells and biliary epithelial cells in HCV-related chronic liver disease

    Get PDF
    Background. Toll-like receptor-4 (TLR4) is a transmembrane pattern recognition receptor that plays a key role in innate immunity by triggering inflammatory responses to Gram negative bacteria lipopolysaccharide (LPS) (1). Since liver is the main clearance organ for LPS, which is excreted in large amounts in the bile (2), it is not surprising that TLR4 has been involved in the pathogenesis of most liver diseases (3). Numerous evidences suggest a role for TLR4 in the pathogenesis of chronic hepatitis C virus (HCV) infection (4) and hepatic fibrosis (5), but the localization and level of TLR4 expression in the liver of patients with hepatitis C have never been investigated. Aim and methods. We aimed to evaluate, by means of immunohistochemistry (IHC) and real-time polymerase chain reaction (rt-PCR), hepatic TLR4 expression in patients with chronic HCV infection. Sixty-one patients with chronic HCV infection, and 12 controls free of liver disease, were included in the study. Each case was analyzed by IHC for TLR4, α–smooth muscle actin (αSMA) and cytokeratin-7 (CK-7), and a subgroup of patients and all controls by rt-PCR for TLR4. A score of activation of portal/septal myofibroblasts and lobular hepatic stellate cells (HSCs) was evaluated by IHC for α-SMA, whereas IHC for CK-7 was analysed in order to count hepatic progenitor cells (HPCs), interlobular bile ducts and intermediate hepatocytes. Results. The parenchimal elements responsible for the highest TLR4 level of expression were HPCs and biliary epithelial cells (BECs) of interlobular bile ducts in the infected group. Double-labeling experiments with anti-TLR4, anti-CK7 and anti-CD133 confirmed this finding. TLR4-positive HPCs and interlobular bile ducts were significantly correlated with the stage of liver disease (p<0.001), the grade of inflammation (p<0.001), and with the activity of portal/septal myofibroblasts (p<0.001). Rt-PCR study confirmed an increased TLR4 expression in the 26 patients analyzed with respect to controls (p<0.001). TLR4 expression positively correlated with fibrosis (p<0.05) and inflammation (p<0.05). Conclusions. The expression of TLR4 in HPCs and BECs in HCV-related liver damage significantly correlates with inflammation, activation of portal/septal myofibroblasts and fibrosis. 1) Beutler. Nature 2004;430:257-63; 2) Van Bossuyt et al. J Hepatol 1988;7:325-37; 3) Seki et al. Hepatology 2008;48:322-35; 4) Machida et al. J Virol 2006;80:866-74. 5) Seki et al. Nat Med 2007;13:1324-32

    Activation of the Unfolded Protein Response (UPR) Is Associated with Cholangiocellular Injury, Fibrosis and Carcinogenesis in an Experimental Model of Fibropolycystic Liver Disease

    Get PDF
    Fibropolycystic liver disease is characterized by hyperproliferation of the biliary epithelium and the formation of multiple dilated cysts, a process associated with unfolded protein response (UPR). In the present study, we aimed to understand the mechanisms of cyst formation and UPR activation in hepatocytic c-Jun N-terminal kinase 1/2 (Jnk1/2) knockout mice. Floxed JNK1/2 (Jnkf/f) and Jnk∆hepa animals were sacrificed at different time points during progression of liver disease. Histological examination of specimens evidenced the presence of collagen fiber deposition, increased α-smooth muscle actin (αSMA), infiltration of CD45, CD11b and F4/80 cells and proinflammatory cytokines (Tnf, TgfÎČ1) and liver injury (e.g., ALT, apoptosis and Ki67-positive cells) in Jnk∆hepa compared with Jnkf/f livers from 32 weeks of age. This was associated with activation of effectors of the UPR, including BiP/GRP78, CHOP and spliced XBP1. Tunicamycin (TM) challenge strongly induced ER stress and fibrosis in Jnk∆hepa animals compared with Jnkf/f littermates. Finally, thioacetamide (TAA) administration to Jnk∆hepa mice induced UPR activation, peribiliary fibrosis, liver injury and markers of biliary proliferation and cholangiocarcinoma (CCA). Orthoallografts of DEN/CCl4-treated Jnk∆hepa liver tissue triggered malignant CCA. Altogether, these results suggest that activation of the UPR in conjunction with fibrogenesis might trigger hepatic cystogenesis and early stages of CCA

    Fragile X mental retardation protein in intrahepatic cholangiocarcinoma: regulating the cancer cell behavior plasticity at the leading edge

    No full text
    Intrahepatic cholangiocarcinoma (iCCA) is a rare malignancy of the intrahepatic biliary tract with a very poor prognosis. Although some clinicopathological parameters can be prognostic factors for iCCA, the molecular prognostic markers and potential mechanisms of iCCA have not been well investigated. Here, we report that the Fragile X mental retardation protein (FMRP), a RNA binding protein functionally absent in patients with the Fragile X syndrome (FXS) and also involved in several types of cancers, is overexpressed in human iCCA and its expression is significantly increased in iCCA metastatic tissues. The silencing of FMRP in metastatic iCCA cell lines affects cell migration and invasion, suggesting a role of FMRP in iCCA progression. Moreover, we show evidence that FMRP is localized at the invasive front of human iCCA neoplastic nests and in pseudopodia and invadopodia protrusions of migrating and invading iCCA cancer cells. Here FMRP binds several mRNAs encoding key proteins involved in the formation and/or function of these protrusions. In particular, we find that FMRP binds to and regulates the expression of Cortactin, a critical regulator of invadopodia formation. Altogether, our findings suggest that FMRP could promote cell invasiveness modulating membrane plasticity and invadopodia formation at the leading edges of invading iCCA cells

    New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming

    Get PDF
    Background: Cholangiocarcinoma (CCA) is still a deadly tumour. Histological and molecular aspects of thioacetamide (TAA)-induced intrahepatic CCA (iCCA) in rats mimic those of human iCCA. Carcinogenic changes and therapeutic vulnerabilities in CCA may be captured by molecular investigations in bile, where we performed bile proteomic and metabolomic analyses that help discovery yet unknown pathways relevant to human iCCA. Methods: Cholangiocarcinogenesis was induced in rats (TAA) and mice (JnkΔhepa + CCl4 + DEN model). We performed proteomic and metabolomic analyses in bile from control and CCA-bearing rats. Differential expression was validated in rat and human CCAs. Mechanisms were addressed in human CCA cells, including Huh28-KRASG12D cells. Cell signaling, growth, gene regulation and [U-13C]-D-glucose-serine fluxomics analyses were performed. In vivo studies were performed in the clinically-relevant iCCA mouse model. Results: Pathways related to inflammation, oxidative stress and glucose metabolism were identified by proteomic analysis. Oxidative stress and high amounts of the oncogenesis-supporting amino acids serine and glycine were discovered by metabolomic studies. Most relevant hits were confirmed in rat and human CCAs (TCGA). Activation of interleukin-6 (IL6) and epidermal growth factor receptor (EGFR) pathways, and key genes in cancer-related glucose metabolic reprogramming, were validated in TAA-CCAs. In TAA-CCAs, G9a, an epigenetic pro-tumorigenic writer, was also increased. We show that EGFR signaling and mutant KRASG12D can both activate IL6 production in CCA cells. Furthermore, phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine-glycine pathway, was upregulated in human iCCA correlating with G9a expression. In a G9a activity-dependent manner, KRASG12D promoted PHGDH expression, glucose flow towards serine synthesis, and increased CCA cell viability. KRASG12D CAA cells were more sensitive to PHGDH and G9a inhibition than controls. In mouse iCCA, G9a pharmacological targeting reduced PHGDH expression. Conclusions: In CCA, we identified new pro-tumorigenic mechanisms: Activation of EGFR signaling or KRAS mutation drives IL6 expression in tumour cells; Glucose metabolism reprogramming in iCCA includes activation of the serine-glycine pathway; Mutant KRAS drives PHGDH expression in a G9a-dependent manner; PHGDH and G9a emerge as therapeutic targets in iCCA
    corecore