59 research outputs found

    Mesenchymal Stromal Cells Based Therapy in Systemic Sclerosis: Rational and Challenges

    Get PDF
    Systemic Sclerosis (SSc) is a rare chronic disease, related to autoimmune connective tissue diseases such as Systemic Lupus Erythematosus and Sjögren's Syndrome. Although its clinical heterogeneity, main features of the disease are: extensive tissue fibrosis with increase matrix deposition in skin and internal organ, microvascular alterations and activation of the immune system with autoantibodies against various cellular antigens. In the diffuse cutaneous scleroderma subtype, the disease is rapidly progressive with a poor prognosis, leading to failure of almost any internal organ, especially lung which is the leading cause of death. Primary trigger is unknown but may involve an immune process against mesenchymal cells in a genetically receptive host. Pathophysiology reveals a pivotal role of fibrosis and inflammation alterations implicating different cell subtypes, cytokines and growth factors, autoantibodies and reactive oxygen species. Despite improvement, the overall survival of SSc patients is still lower than that of other inflammatory diseases. Recommended drugs are agents capable of modulating fibrotic and inflammatory pathways. Cellular therapy has recently emerged as a credible option. Besides autologous hematopoietic stem cell transplantation which demonstrated remarkable improvement, mesenchymal stromal cells (MSCs) represent promising therapeutic candidates. Indeed, these cells possess anti-inflammatory, antiproliferative, antifibrotic, and immunomodulary properties especially by secreting a large panel of bioactive molecules, addressing the most important key points of the SSc. In addition, these cells are very sensitive to their environment and are able to modulate their activity according to the pathophysiological context in which they are located. Autologous or allogeneic MSCs from various sources have been tested in many trials in different auto-immune diseases such as multiple sclerosis, Crohn's disease or systemic lupus erythematosus. They are characterized by a broad availability and no or low acute toxicity. However, few randomized prospective clinical trials were published and their production under ATMP regulatory procedures is complex and time-consuming. Many aspects have still to be addressed to ascertain their potential as well as the potential of their derived products in the management of SSc, probably in association with other therapies

    Transcriptome analysis of bone marrow mesenchymal stromal cells from patients with primary myelofibrosis

    Get PDF
    International audiencePrimary myelofibrosis (PMF) is a clonal myeloproliferative neoplasm whose severity and treatment complexity are attributed to the presence of bone marrow (BM) fibrosis and alterations of stroma impairing the production of normal blood cells. Despite the recently discovered mutations including the JAK2V617F mutation in about half of patients, the primitive event responsible for the clonal proliferation is still unknown. In the highly inflammatory context of PMF, the presence of fibrosis associated with a neoangiogenesis and an osteosclerosis concomitant to the myeloproliferation and to the increase number of circulating hematopoietic progenitors suggests that the crosstalk between hematopoietic and stromal cells is deregulated in the PMF BM microenvironmental niches. Within these niches, mesenchymal stromal cells (BM-MSC) play a hematopoietic supportive role in the production of growth factors and extracellular matrix which regulate the proliferation, differentiation, adhesion and migration of hematopoietic stem/progenitor cells. A transcriptome analysis of BM-MSC in PMF patients will help to characterize their molecular alterations and to understand their involvement in the hematopoietic stem/progenitor cell deregulation that features PMF

    Tetraspanin CD9 participates in dysmegakaryopoiesis and stromal interactions in primary myelofibrosis

    Get PDF
    Primary myelofibrosis is characterized by clonal myeloproliferation, dysmegakaryopoiesis, extramedullary hematopoiesis associated with myelofibrosis and altered stroma in the bone marrow and spleen. The expression of CD9, a tetraspanin known to participate in megakaryopoiesis, platelet formation, cell migration and interaction with stroma, is deregulated in patients with primary myelofibrosis and is correlated with stage of myelofibrosis. We investigated whether CD9 participates in the dysmegakaryopoiesis observed in patients and whether it is involved in the altered interplay between megakaryocytes and stromal cells. We found that CD9 expression was modulated during megakaryocyte differentiation in primary myelofibrosis and that cell surface CD9 engagement by antibody ligation improved the dysmegakaryopoiesis by restoring the balance of MAPK and PI3K signaling. When co-cultured on bone marrow mesenchymal stromal cells from patients, megakaryocytes from patients with primary myelofibrosis displayed modified behaviors in terms of adhesion, cell survival and proliferation as compared to megakaryocytes from healthy donors. These modifications were reversed after antibody ligation of cell surface CD9, suggesting the participation of CD9 in the abnormal interplay between primary myelofibrosis megakaryocytes and stroma. Furthermore, silencing of CD9 reduced CXCL12 and CXCR4 expression in primary myelofibrosis megakaryocytes as well as their CXCL12-dependent migration. Collectively, our results indicate that CD9 plays a role in the dysmegakaryopoiesis that occurs in primary myelofibrosis and affects interactions between megakaryocytes and bone marrow stromal cells. These results strengthen the “bad seed in bad soil” hypothesis that we have previously proposed, in which alterations of reciprocal interactions between hematopoietic and stromal cells participate in the pathogenesis of primary myelofibrosis

    Long-Lasting Inhibitory Effects of Fetal Liver Mesenchymal Stem Cells on T-Lymphocyte Proliferation

    Get PDF
    Human bone marrow mesenchymal stem cells (BM-MSC) are multipotent progenitor cells that have transient immunomodulatory properties on Natural Killer (NK) cells, Dendritic Cells (DC), and T cells. This study compared the use of MSC isolated from bone marrow and fetal liver (FL-MSC) to determine which displayed the most efficient immunosuppressive effects on T cell activation. Although both types of MSC exhibit similar phenotype profile, FL-MSC displays a much more extended in vitro life-span and immunomodulatory properties. When co-cultured with CD3/CD28-stimulated T cells, both BM-MSC and FL-MSC affected T cell proliferation by inhibiting their entry into the cell cycle, by inducing the down-regulation of phospho-retinoblastoma (pRb), cyclins A and D1, as well as up-regulating p27kip1expression. The T cell inhibition by MSC was not due to the soluble HLA-G5 isoform, but to the surface expression of HLA-G1, as shown by the need of cell-cell contact and by the use of neutralizing anti-HLA-G antibodies. To note, in a HLA-G-mediated fashion, MSC facilitated the expansion of a CD4low/CD8low T subset that had decreased secretion of IFN-γ, and an induced secretion of the immunomodulatory cytokine IL-10. Because of their longer lasting in vitro immunosuppressive properties, mainly mediated by HLA-G, and their more efficient induction of IL-10 production and T cell apoptosis, fetal liver MSC could be considered a new tool for MSC therapy to prevent allograft rejection

    Contribution de la chimiokine SDF-1 à la régulation de l'hématopoïèse primitive chez l'homme

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Comparative Study between Direct and Indirect Treatment with Cold Atmospheric Plasma on In Vitro and In Vivo Models of Wound Healing

    No full text
    International audienceCold-atmospheric plasma (CAP) produces a mixture of molecular, ionic, and radical species as well as electric field visible and ultraviolet lights. Biological effects of CAP and its therapeutic potential have been studied in disciplines such as dermatology, oncology, and dentistry. This study investigates both in vitro and in vivo effects of direct and indirect plasma treatment and their influences on wound healing. The effect of plasma treatment on cellular viability, migration, and proliferation are studied using keratinocytes, fibroblasts, and endothelial cells. Plasma is generated in a helium jet using an alternating-current 50-Hz power supply at 32 kV and 90 mW. Results show that 1-min direct CAP treatment stimulates skin cell migration; however, cellular proliferation remains unchanged. Treatment > 3 min leads to cell death. Using the same treatment parameters, notably exposure time, indirect treatment using a plasma-activated medium fails to stimulate cellular migration. A murine model of full-thickness excisional wound healing is used to study the effect of CAP on wound closure. In vivo studies demonstrate that both direct and indirect treatment do not affect acute wound closure in mice. Taken together, these results suggest that direct plasma treatment with homemade plasma devices has the potential to positively influence wound healing, but optimum parameters and suitable wound models must be identified and validated
    corecore