1,710 research outputs found

    Bloch electron in a magnetic field and the Ising model

    Full text link
    The spectral determinant det(H-\epsilon I) of the Azbel-Hofstadter Hamiltonian H is related to Onsager's partition function of the 2D Ising model for any value of magnetic flux \Phi=2\pi P/Q through an elementary cell, where P and Q are coprime integers. The band edges of H correspond to the critical temperature of the Ising model; the spectral determinant at these (and other points defined in a certain similar way) is independent of P. A connection of the mean of Lyapunov exponents to the asymptotic (large Q) bandwidth is indicated.Comment: 4 pages, 1 figure, REVTE

    Enhanced ionization in small rare gas clusters

    Get PDF
    A detailed theoretical investigation of rare gas atom clusters under intense short laser pulses reveals that the mechanism of energy absorption is akin to {\it enhanced ionization} first discovered for diatomic molecules. The phenomenon is robust under changes of the atomic element (neon, argon, krypton, xenon), the number of atoms in the cluster (16 to 30 atoms have been studied) and the fluency of the laser pulse. In contrast to molecules it does not dissappear for circular polarization. We develop an analytical model relating the pulse length for maximum ionization to characteristic parameters of the cluster

    Double butterfly spectrum for two interacting particles in the Harper model

    Full text link
    We study the effect of interparticle interaction UU on the spectrum of the Harper model and show that it leads to a pure-point component arising from the multifractal spectrum of non interacting problem. Our numerical studies allow to understand the global structure of the spectrum. Analytical approach developed permits to understand the origin of localized states in the limit of strong interaction UU and fine spectral structure for small UU.Comment: revtex, 4 pages, 5 figure

    Sub-tropical exotic pine taxa, growth, form and wood properties comparisons across multiple sites in coastal Queensland in: thinning and clearfall age trials; in family and clonal hybrid pine trials and in a genetics x fertiliser x weed control trial.

    Get PDF
    This project supports improved management and deployment of sub-tropical pines for solid wood products. It had three major objectives, in respect of both growth rate and standing tree wood properties: 1) to compare major and potential pine species and hybrids for south-east Queensland; 2) to investigate selection strategies for identifying improved families and clones, and make selections; and, 3) to evaluate both the separate and combined effects of fertiliser application, weed control and genetic improvement in a young hybrid pine trial

    Upper bounds on wavepacket spreading for random Jacobi matrices

    Full text link
    A method is presented for proving upper bounds on the moments of the position operator when the dynamics of quantum wavepackets is governed by a random (possibly correlated) Jacobi matrix. As an application, one obtains sharp upper bounds on the diffusion exponents for random polymer models, coinciding with the lower bounds obtained in a prior work. The second application is an elementary argument (not using multiscale analysis or the Aizenman-Molchanov method) showing that under the condition of uniformly positive Lyapunov exponents, the moments of the position operator grow at most logarithmically in time.Comment: final version, to appear in CM

    Essential spectra of difference operators on \sZ^n-periodic graphs

    Full text link
    Let (\cX, \rho) be a discrete metric space. We suppose that the group \sZ^n acts freely on XX and that the number of orbits of XX with respect to this action is finite. Then we call XX a \sZ^n-periodic discrete metric space. We examine the Fredholm property and essential spectra of band-dominated operators on lp(X)l^p(X) where XX is a \sZ^n-periodic discrete metric space. Our approach is based on the theory of band-dominated operators on \sZ^n and their limit operators. In case XX is the set of vertices of a combinatorial graph, the graph structure defines a Schr\"{o}dinger operator on lp(X)l^p(X) in a natural way. We illustrate our approach by determining the essential spectra of Schr\"{o}dinger operators with slowly oscillating potential both on zig-zag and on hexagonal graphs, the latter being related to nano-structures

    Analytical realization of finite-size scaling for Anderson localization. Does the band of critical states exist for d>2?

    Full text link
    An analytical realization is suggested for the finite-size scaling algorithm based on the consideration of auxiliary quasi-1D systems. Comparison of the obtained analytical results with the results of numerical calculations indicates that the Anderson transition point is splitted into the band of critical states. This conclusion is supported by direct numerical evidence (Edwards and Thouless, 1972; Last and Thouless, 1974; Schreiber, 1985; 1990). The possibility of restoring the conventional picture still exists but requires a radical reinterpretetion of the raw numerical data.Comment: PDF, 11 page

    X-ray Phase-Contrast Imaging and Metrology through Unified Modulated Pattern Analysis

    Get PDF
    We present a method for x-ray phase-contrast imaging and metrology applications based on the sample-induced modulation and subsequent computational demodulation of a random or periodic reference interference pattern. The proposed unified modulated pattern analysis (UMPA) technique is a versatile approach and allows tuning of signal sensitivity, spatial resolution, and scan time. We characterize the method and demonstrate its potential for high-sensitivity, quantitative phase imaging, and metrology to overcome the limitations of existing methods

    On semiclassical dispersion relations of Harper-like operators

    Full text link
    We describe some semiclassical spectral properties of Harper-like operators, i.e. of one-dimensional quantum Hamiltonians periodic in both momentum and position. The spectral region corresponding to the separatrices of the classical Hamiltonian is studied for the case of integer flux. We derive asymptotic formula for the dispersion relations, the width of bands and gaps, and show how geometric characteristics and the absence of symmetries of the Hamiltonian influence the form of the energy bands.Comment: 13 pages, 8 figures; final version, to appear in J. Phys. A (2004
    corecore