8 research outputs found

    Dimethyl-Labeling-Based Quantification of the Lysine Acetylome and Proteome of Plants

    No full text

    Uncovering mechanisms of rubber biosynthesis in Taraxacum koksaghyz - role of cis-prenyltransferase-like 1 protein

    No full text
    The Russian dandelion Taraxacum koksaghyz synthesizes considerable amounts of high‐molecular‐weight rubber in its roots. The characterization of factors that participate in natural rubber biosynthesis is fundamental for the establishment of T. koksaghyz as a rubber crop. The cis‐1,4‐isoprene polymers are stored in rubber particles. Located at the particle surface, the rubber transferase complex, member of the cis‐prenyltransferase (cisPT) enzyme family, catalyzes the elongation of the rubber chains. An active rubber transferase heteromer requires a cisPT subunit (CPT) as well as a CPT‐like subunit (CPTL), of which T. koksaghyz has two homologous forms: TkCPTL1 and TkCPTL2, which potentially associate with the rubber transferase complex. Knockdown of TkCPTL1, which is predominantly expressed in latex, led to abolished poly(cis‐1,4‐isoprene) synthesis but unaffected dolichol content, whereas levels of triterpenes and inulin were elevated in roots. Analyses of latex from these TkCPTL1‐RNAi plants revealed particles that were similar to native rubber particles regarding their particle size, phospholipid composition, and presence of small rubber particle proteins (SRPPs). We found that the particles encapsulated triterpenes in a phospholipid shell stabilized by SRPPs. Conversely, downregulating the low‐expressed TkCPTL2 showed no altered phenotype, suggesting its protein function is redundant in T. koksaghyz. MS‐based comparison of latex proteomes from TkCPTL1‐RNAi plants and T. koksaghyz wild‐types discovered putative factors that convert metabolites in biosynthetic pathways connected to isoprenoids or that synthesize components of the rubber particle shell

    Beyond Histones: New Substrate Proteins of Lysine Deacetylases in Arabidopsis Nuclei

    Full text link
    The reversible acetylation of lysine residues is catalyzed by the antagonistic action of lysine acetyltransferases and deacetylases, which can be considered as master regulators of their substrate proteins. Lysine deacetylases, historically referred to as histone deacetylases, have profound functions in regulating stress defenses and development in plants. Lysine acetylation of the N-terminal histone tails promotes gene transcription and decondensation of chromatin, rendering the DNA more accessible to the transcription machinery. In plants, the classical lysine deacetylases from the RPD3/HDA1-family have thus far mainly been studied in the context of their deacetylating activities on histones, and their versatility in molecular activities is still largely unexplored. Here we discuss the potential impact of lysine acetylation on the recently identified nuclear substrate proteins of lysine deacetylases from the Arabidopsis RPD3/HDA1-family. Among the deacetylase substrate proteins, many interesting candidates involved in nuclear protein import, transcriptional regulation, and chromatin remodeling have been identified. These candidate proteins represent key starting points for unraveling new molecular functions of the Arabidopsis lysine deacetylases. Site-directed engineering of lysine acetylation sites on these target proteins might even represent a new approach for optimizing plant growth under climate change conditions
    corecore