1,819 research outputs found
Experimental Investigation of the Evolution of Gaussian Quantum Discord in an Open System
Gaussian quantum discord is a measure of quantum correlations in Gaussian
systems. Using Gaussian discord we quantify the quantum correlations of a
bipartite entangled state and a separable two-mode mixture of coherent states.
We experimentally analyze the effect of noise addition and dissipation on
Gaussian discord and show that the former noise degrades the discord while the
latter noise for some states leads to an increase of the discord. In
particular, we experimentally demonstrate the near-death of discord by noisy
evolution and its revival through dissipation.Comment: 5 pages, 5 figure
A highly efficient two level diamond based single photon source
An unexplored diamond defect centre which is found to emit stable single
photons at a measured rate of 1.6 MHz at room temperature is reported. The
novel centre, identified in chemical vapour deposition grown diamond crystals,
exhibits a sharp zero phonon line at 734 nm with a full width at half maximum
of ~ 4 nm. The photon statistics confirm the center is a single emitter and
provides direct evidence of the first true two-level single quantum system in
diamond.Comment: 3 pages, 4 figure
Assessing the Polarization of a Quantum Field from Stokes Fluctuation
We propose an operational degree of polarization in terms of the variance of
the projected Stokes vector minimized over all the directions of the Poincar\'e
sphere. We examine the properties of this degree and show that some problems
associated with the standard definition are avoided. The new degree of
polarization is experimentally determined using two examples: a bright squeezed
state and a quadrature squeezed vacuum.Comment: 4 pages, 2 figures. Comments welcome
Naturally-phasematched second harmonic generation in a whispering gallery mode resonator
We demonstrate for the first time natural phase matching for optical
frequency doubling in a high-Q whispering gallery mode resonator made of
Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt
in-coupled continuous wave pump power. The observed saturation pump power of
3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This
suggests an application of our frequency doubler as a source of non-classical
light requiring only a low-power pump, which easily can be quantum noise
limited. Our theoretical analysis of the three-wave mixing in a whispering
gallery mode resonator provides the relative conversion efficiencies for
frequency doubling in various modes
The interaction of 11Li with 208Pb
Background: 11Li is one of the most studied halo nuclei. The fusion of 11Li
with 208Pb has been the subject of a number of theoretical studies with widely
differing predictions, ranging over four orders of magnitude, for the fusion
excitation function.
Purpose: To measure the excitation function for the 11Li + 208Pb reaction.
Methods: A stacked foil/degrader assembly of 208Pb targets was irradiated
with a 11Li beam producing center of target beam energies from above barrier to
near barrier energies (40 to 29 MeV). The intensity of the 11Li beam (chopped)
was 1250 p/s and the beam on-target time was 34 hours. The alpha-decay of the
stopped evaporation residues was detected in a alpha-detector array at each
beam energy in the beam-off period (the beam was on for <= 5 ns and then off
for 170 ns).
Results: The 215At evaporation residues were associated with the fusion of
11Li with 208Pb. The 213,214At evaporation residues were formed by the breakup
of 11Li into 9Li + 2n, with the 9Li fusing with 208Pb. The 214At evaporation
residue appears to result from a "quasi-breakup" process.
Conclusions: Most of 11Li + 208Pb interactions lead to breakup with a small
fraction (<= 11%) leading to complete fusion.Comment: 25 pages, 11 figure
Quantum-Enhanced continuous-wave stimulated Raman spectroscopy
Stimulated Raman spectroscopy has become a powerful tool to study the
spatiodynamics of molecular bonds with high sensitivity, resolution and speed.
However, sensitivity and speed of state-of-the-art stimulated Raman
spectroscopy are currently limited by the shot-noise of the light beam probing
the Raman process. Here, we demonstrate an enhancement of the sensitivity of
continuous-wave stimulated Raman spectroscopy by reducing the quantum noise of
the probing light below the shot-noise limit by means of amplitude squeezed
states of light. Probing polymer samples with Raman shifts around 2950
with squeezed states, we demonstrate a quantum-enhancement of the
stimulated Raman signal-to-noise ratio (SNR) of 3.60 dB relative to the
shot-noise limited SNR. Our proof-of-concept demonstration of quantum-enhanced
Raman spectroscopy paves the way for a new generation of Raman microscopes,
where weak Raman transitions can be imaged without the use of markers or an
increase in the total optical power.Comment: 6 pages, 6 figure
A noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-γ-activated human cells
ABSTRACT A core set of autophagy proteins is required for gamma interferon (IFN-γ)-mediated clearance of Toxoplasma gondii in the mouse because of their control of several downstream effectors, including immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs). However, these effectors are absent (i.e., IRGs) from or nonessential (i.e., GBPs) in IFN-γ-activated human cells, raising the question of how these cells control parasite replication. Here, we define a novel role for ubiquitination and recruitment of autophagy adaptors in the strain-specific control of T. gondii replication in IFN-γ-activated human cells. Vacuoles containing susceptible strains of T. gondii became ubiquitinated, recruited the adaptors p62 and NDP52, and were decorated with LC3. Parasites within LC3-positive vacuoles became enclosed in multiple layers of host membranes, resulting in stunting of parasite replication. However, LC3-positive T. gondii-containing vacuoles did not fuse with endosomes and lysosomes, indicating that this process is fundamentally different from xenophagy, a form of autophagy involved in the control of intracellular bacterial pathogens. Genetic knockout of ATG16L or ATG7 reverted the membrane encapsulation and restored parasite replication, indicating that core autophagy proteins involved in LC3 conjugation are important in the control of parasite growth. Despite a role for the core autophagy machinery in this process, upstream activation through Beclin 1 was not sufficient to enhance the ubiquitination of T. gondii-containing vacuoles, suggesting a lack of reliance on canonical autophagy. These findings demonstrate a new mechanism for IFN-γ-dependent control of T. gondii in human cells that depends on ubiquitination and core autophagy proteins that mediate membrane engulfment and restricted growth
- …