11 research outputs found

    Evaluation of protease resistance and toxicity of amyloid-like food fibrils from whey, soy, kidney bean, and egg white

    No full text
    © 2015 Elsevier Ltd. Abstract The structural properties of amyloid fibrils combined with their highly functional surface chemistry make them an attractive new food ingredient, for example as highly effective gelling agents. However, the toxic role of amyloid fibrils in disease may cause some concern about their food safety because it has not been established unequivocally if consumption of food fibrils poses a health risk to consumers. Here we present a study of amyloid-like fibrils from whey, kidney bean, soy bean, and egg white to partially address this concern. Fibrils showed varied resistance to proteolytic digestion in vitro by either Proteinase K, pepsin or pancreatin. The toxicity of mature fibrils was measured in vitro and compared to native protein, early-stage-fibrillar protein, and sonicated fibrils in two immortalised human cancer cell lines, Caco-2 and Hec-1a. There was no reduction in the viability of either Caco-2 or Hec-1a cells after treatment with a fibril concentration of up to 0.25 mg/mL

    Proteolysis and inflammation of the kidney glomerulus

    No full text
    Proteases play a central role in regulating renal pathophysiology and are increasingly evaluated as actionable drug targets. Here, we review the role of proteolytic systems in inflammatory kidney disease. Inflammatory kidney diseases are associated with broad dysregulations of extracellular and intracellular proteolysis. As an example of a proteolytic system, the complement system plays a significant role in glomerular inflammatory kidney disease and is currently under clinical investigation. Based on two glomerular kidney diseases, lupus nephritis, and membranous nephropathy, we portrait two proteolytic pathomechanisms and the role of the complement system. We discuss how profiling proteolytic activity in patient samples could be used to stratify patients for more targeted interventions in inflammatory kidney diseases. We also describe novel comprehensive, quantitative tools to investigate the entirety of proteolytic processes in a tissue sample. Emphasis is placed on mass spectrometric approaches that enable the comprehensive analysis of the complement system, as well as protease activities and regulation in general

    Comparison of SPEED, S-Trap, and In-Solution-Based Sample Preparation Methods for Mass Spectrometry in Kidney Tissue and Plasma

    No full text
    Mass spectrometry is a powerful technique for investigating renal pathologies and identifying biomarkers, and efficient protein extraction from kidney tissue is essential for bottom-up proteomic analyses. Detergent-based strategies aid cell lysis and protein solubilization but are poorly compatible with downstream protein digestion and liquid chromatography-coupled mass spectrometry, requiring additional purification and buffer-exchange steps. This study compares two well-established detergent-based methods for protein extraction (in-solution sodium deoxycholate (SDC); suspension trapping (S-Trap)) with the recently developed sample preparation by easy extraction and digestion (SPEED) method, which uses strong acid for denaturation. We compared the quantitative performance of each method using label-free mass spectrometry in both sheep kidney cortical tissue and plasma. In kidney tissue, SPEED quantified the most unique proteins (SPEED 1250; S-Trap 1202; SDC 1197). In plasma, S-Trap produced the most unique protein quantifications (S-Trap 150; SDC 148; SPEED 137). Protein quantifications were reproducible across biological replicates in both tissue (R2 = 0.85–0.90) and plasma (SPEED R2 = 0.84; SDC R2 = 0.76, S-Trap R2 = 0.65). Our data suggest SPEED as the optimal method for proteomic preparation in kidney tissue and S-Trap or SPEED as the optimal method for plasma, depending on whether a higher number of protein quantifications or greater reproducibility is desired

    Identifying Candidate Protein Markers of Acute Kidney Injury in Acute Decompensated Heart Failure

    No full text
    One-quarter of patients with acute decompensated heart failure (ADHF) experience acute kidney injury (AKI)—an abrupt reduction or loss of kidney function associated with increased long-term mortality. There is a critical need to identify early and real-time markers of AKI in ADHF; however, to date, no protein biomarkers have exhibited sufficient diagnostic or prognostic performance for widespread clinical uptake. We aimed to identify novel protein biomarkers of AKI associated with ADHF by quantifying changes in protein abundance in the kidneys that occur during ADHF development and recovery in an ovine model. Relative quantitative protein profiling was performed using sequential window acquisition of all theoretical fragment ion spectra–mass spectrometry (SWATH–MS) in kidney cortices from control sheep (n = 5), sheep with established rapid-pacing-induced ADHF (n = 8), and sheep after ~4 weeks recovery from ADHF (n = 7). Of the 790 proteins quantified, we identified 17 candidate kidney injury markers in ADHF, 1 potential kidney marker of ADHF recovery, and 2 potential markers of long-term renal impairment (differential abundance between groups of 1.2–2.6-fold, adjusted p p p < 0.01). New biomarkers for the early detection of AKI in ADHF may help us to evaluate effective treatment strategies to prevent mortality and improve outcomes for patients

    An integrated organoid omics map extends modeling potential of kidney disease

    No full text
    Abstract Kidney organoids are a promising model to study kidney disease, but their use is constrained by limited knowledge of their functional protein expression profile. Here, we define the organoid proteome and transcriptome trajectories over culture duration and upon exposure to TNFα, a cytokine stressor. Older organoids increase deposition of extracellular matrix but decrease expression of glomerular proteins. Single cell transcriptome integration reveals that most proteome changes localize to podocytes, tubular and stromal cells. TNFα treatment of organoids results in 322 differentially expressed proteins, including cytokines and complement components. Transcript expression of these 322 proteins is significantly higher in individuals with poorer clinical outcomes in proteinuric kidney disease. Key TNFα-associated protein (C3 and VCAM1) expression is increased in both human tubular and organoid kidney cell populations, highlighting the potential for organoids to advance biomarker development. By integrating kidney organoid omic layers, incorporating a disease-relevant cytokine stressor and comparing with human data, we provide crucial evidence for the functional relevance of the kidney organoid model to human kidney disease
    corecore