45 research outputs found

    Trazado de mapas medios anuales de energía solar global, directa, difusa y Tilt, usando la base de datos de SWERA : Caso de estudio: provincias de Salta y Jujuy

    Get PDF
    En este trabajo se presentan los mapas de energía solar media anual correspondientes a la radiación solar global, directa normal al haz, difusa y Tilt, para las provincias de Salta y Jujuy. Los mapas se trazaron utilizando los datos de la base satelital SWERA, cuyas celdas son cuadrados de 40 km. de lado, a través del método geoestadístico del kriging y un variograma lineal. Se compararon las distribuciones de irradiación (energía) solar con las provincias fitogeográficas y la distribución de las lluvias anuales en la provincia de Salta, encontrándose una rápida correlación con una de ellas. Los mapas se presentan como una herramienta inicial para el estudio de la distribución de la radiación solar en el Norte de Argentina.In this paper we present the maps of annual average solar energy corresponding to the global solar radiation, beam normal, diffuse and Tilt, for the provinces of Salta and Jujuy. The maps were plotted using the satellite-based database SWERA, whose cells are squares of 40 km. long side, through the geostatistical method of kriging and linear variogram. We compared the distributions of solar radiation (energy) with the phytogeographic provinces and distribution of annual rainfall in the province of Salta, and a fast correlation was found with one of them. The maps are presented as an initial screening tool to study the distribution of solar radiation in northern Argentina.Asociación Argentina de Energías Renovables y Medio Ambiente (ASADES

    Inhibition of interferon response by cystatin B: implication in HIV replication of macrophage reservoirs

    Get PDF
    Cystatin B and signal transducer and activator of transcription-1 (STAT-1) phosphorylation have recently been shown to increase human immunodeficiency virus-1 (HIV-1) replication in monocyte-derived macrophages (MDM), but the molecular pathways by which they do are unknown. We hypothesized that cystatin B inhibits the interferon (IFN) response and regulates STAT-1 phosphorylation by interacting with additional proteins. To test if cystatin B inhibits the IFN-β response, we performed luciferase reporter gene assays in Vero cells, which are IFN deficient. Interferon-stimulated response element (ISRE)-driven expression of firefly luciferase was significantly inhibited in Vero cells transfected with a cystatin B expression vector compared to cells transfected with an empty vector. To determine whether cystatin B interacts with other key players regulating STAT-1 phosphorylation and HIV-1 replication, cystatin B was immunoprecipitated from HIV-1-infected MDM. The protein complex was analyzed by liquid chromatography tandem mass spectrometry. Protein interactions with cystatin B were verified by Western blots and immunofluorescence with confocal imaging. Our findings confirmed that cystatin B interacts with pyruvate kinase M2 isoform, a protein previously associated cocaine enhancement of HIV-1 replication, and major vault protein (MVP), an IFN-responsive protein that interferes with JAK/STAT signals. Western blot studies confirmed the interaction with pyruvate kinase M2 isoform and MVP. Immunofluorescence studies of HIV-1-infected MDM showed that upregulated MVP colocalized with STAT-1. To our knowledge, the current study is the first to demonstrate the coexpression of cystatin B, STAT-1, MVP, and pyruvate kinase M2 isoform with HIV-1 replication in MDM and thus suggests novel targets for HIV-1 restriction in macrophages, the principal reservoirs for HIV-1 in the central nervous system

    Cerebrospinal fluid biomarker candidates associated with human WNV neuroinvasive disease

    Get PDF
    During the last decade, the epidemiology of WNV in humans has changed in the southern regions of Europe, with high incidence of West Nile fever (WNF) cases, but also of West Nile neuroinvasive disease (WNND). The lack of human vaccine or specific treatment against WNV infection imparts a pressing need to characterize indicators associated with neurological involvement. By its intimacy with central nervous system (CNS) structures, modifications in the cerebrospinal fluid (CSF) composition could accurately reflect CNS pathological process. Until now, few studies investigated the association between imbalance of CSF elements and severity of WNV infection. The aim of the present study was to apply the iTRAQ technology in order to identify the CSF proteins whose abundances are modified in patients with WNND. Forty-seven proteins were found modified in the CSF of WNND patients as compared to control groups, and most of them are reported for the first time in the context of WNND. On the basis of their known biological functions, several of these proteins were associated with inflammatory response. Among them, Defensin-1 alpha (DEFA1), a protein reported with anti-viral effects, presente

    Simulating the performance of the Southern Wide-view Gamma-ray Observatory

    Get PDF
    The Southern Wide-view Gamma-ray Observatory (SWGO) will be a next-generation gamma-ray observatory using a large array of particle detectors at a high elevation site in South America. This project is currently in a three years R&D phase in which the design will be optimised for cost and performance. Therefore it is crucial to efficiently evaluate the impact of different design options on the scientific objectives of the observatory. In this contribution, we will introduce the strategy and the simulation framework in which this evaluation takes place

    Study of water Cherenkov detector designs for the SWGO experiment

    Get PDF
    The Southern Wide-field Gamma-ray Observatory (SWGO) is a next-generation ground-based gamma-ray detector under development to reach a full sky coverage together with the current HAWC and LHAASO experiments in the northern hemisphere. It will complement the observation of transient and variable multi-wavelength and multi-messenger phenomena, offering moreover the possibility to access the Galactic Centre. One of the possible SWGO configurations consists of an array of water Cherenkov tanks, with a high fill-factor inner array and a low-density outer array, covering an overall area of one order of magnitude larger than HAWC. To reach a high detection efficiency and discrimination capability between gamma-ray and hadronic air showers, various tank designs were studied. Double-layer tanks with several sizes, shapes and number of photomultiplier tubes have been considered. Single-particle simulations have been performed to study the tank response, using muons, electrons, and gamma-rays with energies typical of extensive air showers particles, entering the tanks with zenith angles from 0 to 60 degrees. The tank response was evaluated considering the particle detection efficiency, the number of photoelectrons produced by the photomultiplier tubes, and the time resolution of the measurement of the first photon. The study allowed to compare the performance of tanks with circular and square base, to understand which design optimizes the performance of the array. The method used in the study and the results will be discussed in this paper

    Lake Deployment of Southern Wide-field Gamma-ray Observatory (SWGO) Detector Units

    Get PDF
    The Southern Wide-field Gamma-ray Observatory (SWGO) will be a next-generation high altitude gamma-ray survey observatory in the southern hemisphere consisting of an array of water cherenkov detectors. With its energy range, wide field of view, large duty cycle and location it will complement the other existing and planned gamma-ray observatories. In this contribution we describe the lake concept for SWGO, an alternative to a HAWC-like design with individual water tanks and a LHAASO-style design with artificial ponds. In the lake concept, bladders filled with clean water are deployed near the surface of a natural lake, where each bladder is a light-tight stand-alone unit containing one or more photosensors. We will give an overview of the advantages and challenges for this design concept and describe the first results obtained from prototyping

    Double-layered Water Cherenkov Detector for SWGO

    Get PDF
    The Southern Wide-field Gamma-ray Observatory (SWGO) will use the well-established and cost-effective technique of detecting Cherenkov light produced in water-filled detection units for TeV gamma-ray astronomy. Leveraging detector material reflectivity together with an optimised aspect ratio is an option to improve the performance of an array of such detector units. The double-layered Water Cherenkov Detector units comprise chambers with single photosensors in each. A reflective upper compartment enhances sensitivity to impinging secondary particles. A shallow lower compartment enables muon tagging and consequently improves the gamma hadron separation power of the observatory. Here we present detailed studies on the double-layered unit design

    Technological options for the Southern Wide-field Gamma-ray Observatory (SWGO) and current design status

    Get PDF
    The SWGO Collaboration is in the process of designing and prototyping a wide field of view, high duty cycle complement to CTA and the existing ground-based particle detectors of the Northern Hemisphere (HAWC and LHAASO). In this contribution, we will compare the various technological options for designing the detector and present an overarching system design accommodating them. We will introduce a feasible reference configuration that is used for the first large-scale simulations and cost estimates, and show ongoing prototyping work focused on reaching a maintenance-free and cost-effective detector

    Benchmarking the Science for the Southern Wide-Field Gamma-ray Observatory (SWGO)

    Get PDF
    The Southern Wide-field Gamma-ray Observatory (SWGO) is the project to build a new extensive air shower particle detector for the observation of very-high-energy gamma-rays in South America. SWGO is currently planned for installation in the Southern Hemisphere, which grants it a unique science potential among ground-based gamma-ray detectors. It will complement the capabilities of CTA, working as a wide-field instrument for the monitoring of transient and variable phenomena, and will expand the sky coverage of Northern Hemisphere facilities like HAWC and LHAASO, thus granting access to the entire Galactic Plane and the Galactic Center. SWGO aims to achieve excellent sensitivity over a very large target energy range from about 100 GeV to the PeV, and improve on the performance of current sampling array instruments in all observational parameters, including energy and angular resolution, background rejection, and single-muon detection capabilities. The directives for the final observatory design will be given by a number of key science goals which are being defined over the course of the Project’s R&D phase. In this contribution we will present the core science topics and target performance goals that serve as benchmarks to guide SWGO’s design configuration
    corecore