30 research outputs found
Solid-state NMR spectroscopy insights for resolving different water pools in alginate hydrogels
Alginate hydrogels are versatile self-assembling biocompatible materials with diverse biomedical and food industrial applications, which includes uses in encapsulation, (drug) delivery and tissue engineering. Hydrogel formation requires cross-linking, which for alginates is often done with calcium ions that engage in specific interactions with the polysaccharide carboxylic acid groups. Water molecules also hydrate these alginate groups and fill macropores within the hydrogels, with implications for both mechanical properties and cargo encapsulation. Understanding these aspects of hydrogels requires the observation and characterization of the hydrogel waters, how they engage the alginate, and fill the macropores. Here we employed solid-state NMR (ssNMR) spectroscopy to detect and study water molecules in re-hydrated alginate hydrogels. 1H, 2H, and 13C magic angle spinning (MAS) NMR and relaxation measurements were combined to observe both water and alginate. Two different water phases were detected that vary upon gradual (re)hydration of the alginate hydrogels. These water pools differ in their chemical shifts and NMR relaxation properties, reflecting hydration waters directly associated with the carbohydrate polymers alongside dynamic waters in the macropores. Thus, the ssNMR detects the water-filled macropore water pools and how they vary upon calcium cross-linking. We also observe how calcium cross-linking selectively immobilizes the α-guluronate monosaccharides, but leaves the β-mannuronate units more flexible and prone to selective re-hydration. Thus, these ssNMR experiments can be used to probe cross-linking and hydration of alginate hydrogels, with implications for our understanding of design parameters that tune their performance in (drug) delivery and other food industrial applications
Production of isotopically enriched high molecular weight hyaluronic acid and characterization by solid-state NMR
Hyaluronic acid (HA) is a naturally occurring polysaccharide that is abundant in the extracellular matrix (ECM) of all vertebrate cells. HA-based hydrogels have attracted great interest for biomedical applications due to their high viscoelasticity and biocompatibility. In both ECM and hydrogel applications, high molecular weight (HMW)-HA can absorb a large amount of water to yield matrices with a high level of structural integrity. To understand the molecular underpinnings of structural and functional properties of HA-containing hydrogels, few techniques are available. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for such studies, e.g. 13C NMR measurements can reveal the structural and dynamical features of (HMW) HA. However, a major obstacle to 13C NMR is the low natural abundance of 13C, necessitating the generation of HMW-HA that is enriched with 13C isotopes. Here we present a convenient method to obtain 13C- and 15N-enriched HMW-HA in good yield from Streptococcus equi subsp. zooepidemicus. The labeled HMW-HA has been characterized by solution and magic angle spinning (MAS) solid-state NMR spectroscopy, as well as other methods. These results will open new ways to study the structure and dynamics of HMW-HA-based hydrogels, and interactions of HMW-HA with proteins and other ECM components, using advanced NMR techniques. </p
Protofilament structure and supramolecular polymorphism of aggregated mutant huntingtin exon 1
Huntington's disease is a progressive neurodegenerative disease caused by expansion of the polyglutamine domain in the first exon of huntingtin (HttEx1). The extent of expansion correlates with disease progression and formation of amyloid-like protein deposits within the brain. The latter display polymorphism at the microscopic level, both in cerebral tissue and in vitro. Such polymorphism can dramatically influence cytotoxicity, leading to much interest in the conditions and mechanisms that dictate the formation of polymorphs. We examine conditions that govern HttEx1 polymorphism in vitro, including concentration and the role of the non-polyglutamine flanking domains. Using electron microscopy, we observe polymorphs that differ in width and tendency for higher-order bundling. Strikingly, aggregation yields different polymorphs at low and high concentrations. Narrow filaments dominate at low concentrations that may be more relevant in vivo. We dissect the role of N- and C-terminal flanking domains using protein with the former (httNT or N17) largely removed. The truncated protein is generated by trypsin cleavage of soluble HttEx1 fusion protein, which we analyze in some detail. Dye binding and solid-state NMR studies reveal changes in fibril surface characteristics and flanking domain mobility. Higher-order interactions appear facilitated by the C-terminal tail, while the polyglutamine forms an amyloid core resembling those of other polyglutamine deposits. Fibril-surface-mediated branching, previously attributed to secondary nucleation, is reduced in absence of httNT. A new model for the architecture of the HttEx1 filaments is presented and discussed in context of the assembly mechanism and biological activity
New insights in polydopamine formation via surface adsorption
Polydopamine is a biomimetic self-adherent polymer, which can be easily deposited on a wide variety of materials. Despite the rapidly increasing interest in polydopamine-based coatings, the polymerization mechanism and the key intermediate species formed during the deposition process are still controversial. Herein, we report a systematic investigation of polydopamine formation on halloysite nanotubes; the negative charge and high surface area of halloysite nanotubes favour the capture of intermediates that are involved in polydopamine formation and decelerate the kinetics of the process, to unravel the various polymerization steps. Data from X-ray photoelectron and solid-state nuclear magnetic resonance spectroscopies demonstrate that in the initial stage of polydopamine deposition, oxidative coupling reaction of the dopaminechrome molecules is the main reaction pathway that leads to formation of polycatecholamine oligomers as an intermediate and the post cyclization of the linear oligomers occurs subsequently. Furthermore, TRIS molecules are incorporated into the initially formed oligomers
Structural Basis of Tau Interaction With BIN1 and Regulation by Tau Phosphorylation
Bridging integrator-1 (BIN1) gene is associated with an increased risk to develop Alzheimer’s disease, a tauopathy characterized by intra-neuronal accumulation of phosphorylated Tau protein as paired helical filaments. Direct interaction of BIN1 and Tau proteins was demonstrated to be mediated through BIN1 SH3 C-terminal domain and Tau (210–240) peptide within Tau proline-rich domain. We previously showed that BIN1 SH3 interaction with Tau is decreased by phosphorylation within Tau proline-rich domain, of at least T231. In addition, the BIN1/Tau interaction is characterized by a dynamic equilibrium between a closed and open conformations of BIN1 isoform 1, involving an intramolecular interaction with its C-terminal BIN1 SH3 domain. However, the role of the BIN1/Tau interaction, and its potential dysregulation in Alzheimer’s disease, is not yet fully understood. Here we showed that within Tau (210–240) peptide, among the two proline-rich motifs potentially recognized by SH3 domains, only motif P216TPPTR221 is bound by BIN1 SH3. A structural model of the complex between BIN1 SH3 and Tau peptide (213–229), based on nuclear magnetic resonance spectroscopy data, revealed the molecular detail of the interaction. P216 and P219 within the proline-rich motif were in direct contact with the aromatic F588 and W562 of the BIN1 SH3 domain. The contact surface is extended through electrostatic interactions between the positively charged R221 and K224 residues of Tau peptide and those negatively charged of BIN1 SH3, corresponding to E556 and E557. We next investigated the impact of multiple Tau phosphorylations within Tau (210–240) on its interaction with BIN1 isoform 1. Tau (210–240) phosphorylated at four different sites (T212, T217, T231, and S235), contrary to unphosphorylated Tau, was unable to compete with the intramolecular interaction of BIN1 SH3 domain with its CLAP domain. In accordance, the affinity of BIN1 SH3 for phosphorylated Tau (210–240) peptide was reduced, with a five-fold increase in the dissociation constant, from a Kd of 44 to 256 μM. This study highlights the complexity of the regulation of BIN1 isoform 1 with Tau. As abnormal phosphorylation of Tau is linked to the pathology development, this regulation by phosphorylation might have important functional consequences
Photocontrol of the β-Hairpin Polypeptide Structure through an Optimized Azobenzene-Based Amino Acid Analogue
A family of neurodegenerative diseases, including Huntington’s disease (HD) and spinocerebellar ataxias, are associated with an abnormal polyglutamine (polyQ) expansion in mutant proteins that become prone to form amyloid-like aggregates. Prior studies have suggested a key role for β-hairpin formation as a driver of nucleation and aggregation, but direct experimental studies have been challenging. Toward such research, we set out to enable spatiotemporal control over β-hairpin formation by the introduction of a photosensitive β-turn mimic in the polypeptide backbone, consisting of a newly designed azobenzene derivative. The reported derivative overcomes the limitations of prior approaches associated with poor photochemical properties and imperfect structural compatibility with the desired β-turn structure. A new azobenzene-based β-turn mimic was designed, synthesized, and found to display improved photochemical properties, both prior and after incorporation into the backbone of a polyQ polypeptide. The two isomers of the azobenzene-polyQ peptide showed different aggregate structures of the polyQ peptide fibrils, as demonstrated by electron microscopy and solid-state NMR (ssNMR). Notably, only peptides in which the β-turn structure was stabilized (azobenzene in the cis configuration) closely reproduced the spectral fingerprints of toxic, β-hairpin-containing fibrils formed by mutant huntingtin protein fragments implicated in HD. These approaches and findings will enable better deciphering of the roles of β-hairpin structures in protein aggregation processes in HD and other amyloid-related neurodegenerative diseases.publishedVersio
A Universal Nanogel-Based Coating Approach for Medical Implant Materials
Coatings are essential for biomedical applications antifouling and antimicrobialproperties, supporting cell adhesion and tissue integration and particularlyinteresting in this field are nanogel (nGel)-based coatings. Since biomaterialsdiffer in physiochemical properties, specific nGel-coating strategies need to bedeveloped for every distinct material, leading to complex coating strategies.Hence, the solution lies in adopting a universal strategy to apply the same nGelcoating with the same function on a wide range of implant surfaces. To this end, auniversal nGel-based coating approach provides the same coating using a singlemethod on implant materials including stiff polymer materials, metals, ceramics,glass, and elastomers. The coating formation is achieved by electrostatic interactionsbetween oxygen plasma–activated surfaces and positively charged nGelsusing a spray-deposition method. Fluorescent labels are introduced into thenGels as a model for post-modification capabilities to increase the functionality ofthe coating. The coating is highly stable under in vitro physiological conditionswith the retention of its function on different clinically relevant materials.Meanwhile, the in vivo study indicates that the nGel coating on a polyvinylidenefluoride hernia mesh is stable and biocompatible, therefore, making the coatingand the coating strategy, a highly impactful approach for future clinicaldevelopments
Structural Dynamics and Tunability for Colloidal Tin Halide Perovskite Nanostructures
Lead halide perovskite nanocrystals are highly attractive for next-generation optoelectronics because they are easy to synthesize and offer great compositional and morphological tunability. However, the replacement of lead by tin for sustainability reasons is hampered by the unstable nature of Sn2+ oxidation state and by an insufficient understanding of the chemical processes involved in the synthesis. Here we demonstrate an optimized synthetic route to obtain stable, tunable, and monodisperse CsSnI3 nanocrystals, exhibiting well defined excitonic peaks. Similar to lead halide perovskites, we prepare these nanocrystals by combining a precursor mixture of SnI2 , oleylamine and oleic acid, with a Cs-oleate precursor. Among the products, nanocrystals with 10 nm lateral size in the Îł-orthorhombic phase prove to be the most stable. To achieve such stability, an excess of precursor SnI2 as well as sub-stoichiometric Sn:ligand ratios are key. Structural, compositional and optical investigations complemented by first-principle DFT calculations confirm that nanocrystal nucleation and growth follow the formation of (R-NH3 + )2 SnI4 nanosheets with R = C18 H35 . Under specific synthetic conditions, stable mixtures of 3D nanocrystals CsSnI3 and 2D nanosheets (Ruddlesden-Popper (R-NH3 + )2 Csn-1 Snn I3n+1 with n>1) are obtained. These results set a path to exploiting the high potential of Sn halide perovskite nanocrystals for opto-electronic applications. This article is protected by copyright. All rights reserved
Activation of platinum(IV) prodrugs by cytochrome c and characterization of the protein binding sites
Platinum(IV) complexes generally require reduction to reactive Pt(II) species to exert their chemotherapeutic activity. The process of reductive activation of 15N-labeled (OC-6-43)-bis(acetato)diamminedichloridoplatinum(IV), in the presence of nicotinamide adenine dinucleotide (NADH) and horse heart cytochrome c (cyt c), was monitored by 1H,15N-HSQC NMR spectroscopy and protein digestion experiments. It has been shown that cyt c plays a catalytic role in the transfer of two reducing equivalents from NADH to Pt(IV) species. Noncovalent interactions between reduced monoaqua cisplatin (cis-[PtCl(15NH3)2(H2O)]+) and the protein, in the proximity of the heme cofactor, and also covalent binding of platinum to the protein region around Met65 and Met80 take place
Monitoring Interactions inside Cells by Advanced Spectroscopies: Overview of Copper Transporters and Cisplatin
Resistance, either at the onset of the treatment or developed after an initial positive response, is a major limitation of antitumor therapy. In the case of platinum-based drugs, copper transporters have been found to interfere with drug trafficking by facilitating the import or favoring the platinum export and inactivation