52 research outputs found

    Infections Are Not Increased in Scleroderma Compared to Non-Inflammatory Musculoskeletal Disorders Prior to Disease Onset

    Get PDF
    The etiology of scleroderma (SSc) is unknown; immunogenic stimuli such as infections and vaccinations could theoretically be risk factors for scleroderma. Our objective was to assess the relationship between viral and bacterial infec-tions, and vaccinations, prior to diagnosis of SSc compared to non-inflammatory controls. Methods: A questionnaire was sent to individuals with SSc (n =83) and controls (n=351) with non-inflammatory musculoskeletal (MSK) disorders (os-teoarthritis, n = 204; tendonitis, n = 58; fibromyalgia, n= 89) from a rheumatology practice. Questions ascertained past in-fections, exposure to infectious agents and vaccination history. Results: The response rate was 78% (SSc) and 56% (MSK controls). The mean age was 56 ± 1.6 (SSc) and 58 ± 0.9 (MSK); 88% (SSc) and 82% (MSK) were female. No association between prior infections and SSc was observed. In fact, controls were more likely than SSc subjects to report any infec-tion within 1-year prior to disease diagnosis (35% vs. 16%, p<0.006), or to have suffered a trauma to affected joints prior to diagnosis (44% vs. 19%, p<0.0002). Within the 1-year prior to disease diagnosis, controls reported slightly more strep-tococcal infections (p<0.2), infections with diarrhea and vomiting (p<0.3), and antibiotic use (p<0.09), although none of these results were statistically significant. Histories of any hepatitis, rubella, any bacterial infection, and having had a pre-vious positive tuberculosis skin test were not significantly different between groups and were actually more often reported by the control subjects. SSc reported slightly more hepatitis B (p<0.08), more rheumatic fever (p<0.8) in past, and herpes zoster (p<0.4), although no differences reached significance. Conclusion: This study does not support that self-report of symptomatic infections are more likely to occur ever (prior to diagnosis) or within 1-year prior to symptom onset of SSc, or that vaccinations in adulthood trigger SSc

    Optical properties and composition of viscous organic particles found in the Southern Great Plains

    Get PDF
    Atmospheric high-viscosity organic particles (HVOPs) were observed in samples of ambient aerosols collected in April and May 2016 in the Southern Great Plains of the United States. These particles were apportioned as either airborne soil organic particles (ASOPs) or tar balls (TBs) from biomass burning based on spetro-microscopic imaging and assessments of meteorological records of smoke and precipitation data. Regardless of their apportionment, the number fractions of HVOPs were positively correlated (R2=0.85) with increased values of absorption Ångström exponent (AAE) measured in situ for ambient aerosol at the site. Extending this correlation to 100 % HVOPs yields an AAE of 2.6, similar to previous literature reports of the class of light-absorbing organic particles known as brown carbon (BrC). One out of the three samples investigated had a significant number of ASOPs, while the other two samples contained TBs. Although there are chemical similarities between ASOPs and TBs, they can be distinguished based on composition inferred from near-edge absorption X-ray fine structure (NEXAFS) spectroscopy. ASOPs were distinguished from TBs based on their average − COOH/C = C and − COOH/COH peak ratios, with ASOPs having lower ratios. NEXAFS spectra of filtered soil organic brine particles nebulized from field samples of standing water deposited after rain were consistent with ASOPs when laboratory particles were generated by bubble bursting at the air–organic brine interface. However, particles generated by nebulizing the bulk volume of soil organic brine had a particle composition different from ASOPs. These observations are consistent with the raindrop generation mechanism responsible for ASOP emissions in the area of study. In contrast, nebulized samples carry with them higher fractions of soil inorganics dissolved in the bulk volume of soil brine, which are not aerosolized by the raindrop mechanism. Our results support the bubble bursting mechanism of particle generation during rainfall resulting in the ejection of soil organics into the atmosphere. In addition, our results show that ASOPs may only be atmospherically relevant during times when suitable emission conditions are met

    Radical-Initiated Brown Carbon Formation in Sunlit Carbonyl–Amine–Ammonium Sulfate Mixtures and Aqueous Aerosol Particles

    Get PDF
    Brown carbon (BrC) formed from glyoxal+ammonium sulfate (AS) and methylglyoxal+AS reactions photobleaches quickly, leading to the assumption that BrC formed overnight by Maillard reactions will be rapidly destroyed at sunrise. Here, we tested this assumption by reacting glyoxal, methylglyoxal, glycolaldehyde, or hydroxyacetone in aqueous mixtures with reduced nitrogen species at pH 4–5 in the dark and in sunlight (\u3e350 nm) for at least 10 h. The absorption of fresh carbonyl+AS mixtures decreased when exposed to sunlight, and no BrC formed, as expected from previous work. However, the addition of amines (either methylamine or glycine) allowed BrC to form in sunlight at comparable rates as in the dark. Hydroxyacetone+amine+AS aqueous mixtures generally browned faster in sunlight than in the dark, especially in the presence of HOOH, indicating a radical-initiated BrC formation mechanism is involved. In experiments with airborne aqueous aerosol containing AS, methylamine, and glyoxal or methylglyoxal, browning was further enhanced, especially in sunlight (\u3e300 nm), forming aerosol with optical properties similar to “very weak” atmospheric BrC. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analysis of aerosol filter extracts indicates that exposure of methylglyoxal+AS aqueous aerosol to methylamine gas, sunlight, and cloud processing increases incorporation of ammonia, methylamine, and photolytic species (e.g., acetyl radicals) into conjugated oligomer products. These results suggest that when amines are present, photolysis of first-generation, “dark reaction” BrC (imines and imidazoles) initiates faster, radical-initiated browning processes that may successfully compete with photobleaching, are enhanced in aqueous aerosol particles relative to bulk liquid solutions, and can produce BrC consistent with atmospheric observations

    Elemental Mixing State of Aerosol Particles Collected in Central Amazonia during GoAmazon2014/15

    Get PDF
    Two complementary techniques, Scanning Transmission X-ray Microscopy/Near Edge Fine Structure spectroscopy (STXM/NEXAFS) and Scanning Electron Microscopy/Energy Dispersive X-ray spectroscopy (SEM/EDX), have been quantitatively combined to characterize individual atmospheric particles. This pair of techniques was applied to particle samples at three sampling sites (ATTO, ZF2, and T3) in the Amazon basin as part of the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) field campaign during the dry season of 2014. The combined data was subjected to k-means clustering using mass fractions of the following elements: C, N, O, Na, Mg, P, S, Cl, K, Ca, Mn, Fe, Ni, and Zn. Cluster analysis identified 12 particle types across different sampling sites and particle sizes. Samples from the remote Amazon Tall Tower Observatory (ATTO, also T0a) exhibited less cluster variety and fewer anthropogenic clusters than samples collected at the sites nearer to the Manaus metropolitan region, ZF2 (also T0t) or T3. Samples from the ZF2 site contained aged/anthropogenic clusters not readily explained by transport from ATTO or Manaus, possibly suggesting the effects of long range atmospheric transport or other local aerosol sources present during sampling. In addition, this data set allowed for recently established diversity parameters to be calculated. All sample periods had high mixing state indices (χ) that were \u3e0.8. Two individual particle diversity (Di) populations were observed, with particles \u3c0.5 ”m having a Di of ~2.4 and \u3e0.5 ”m particles having a Di of ~3.6, which likely correspond to fresh and aged aerosols, respectively. The diversity parameters determined by the quantitative method presented here will serve to aid in the accurate representation of aerosol mixing state, source apportionment, and aging in both less polluted and more developed environments in the Amazon Basin

    Kinetics, Products, and Brown Carbon Formation by Aqueous-Phase Reactions of Glycolaldehyde with Atmospheric Amines and Ammonium Sulfate

    Get PDF
    Glycolaldehyde (GAld) is a C2 water-soluble aldehyde produced during the atmospheric oxidation of isoprene and many other species and is commonly found in cloudwater. Previous work has established that glycolaldehyde evaporates more readily from drying aerosol droplets containing ammonium sulfate (AS) than does glyoxal, methylglyoxal, or hydroxyacetone, which implies that it does not oligomerize as quickly as these other species. Here, we report NMR measurements of glycolaldehyde’s aqueous-phase reactions with AS, methylamine, and glycine. Reaction rate constants are smaller than those of respective glyoxal and methylglyoxal reactions in the pH range of 3–6. In follow-up cloud chamber experiments, deliquesced glycine and AS seed particles were found to take up glycolaldehyde and methylamine and form brown carbon. At very high relative humidity, these changes were more than 2 orders of magnitude faster than predicted by our bulk liquid NMR kinetics measurements, suggesting that reactions involving surface-active species at crowded air–water interfaces may play an important role. The high-resolution liquid chromatography–electrospray ionization–mass spectrometric analysis of filter extracts of unprocessed AS + GAld seed particles identified sugar-like C6 and C12 GAld oligomers, including proposed product 3-deoxyglucosone, with and without modification by reactions with ammonia to diimine and imidazole forms. Chamber exposure to methylamine gas, cloud processing, and simulated sunlight increased the incorporation of both ammonia and methylamine into oligomers. Many C4–C16 imidazole derivatives were detected in an extract of chamber-exposed aerosol along with a predominance of N-derivatized C6 and C12 glycolaldehyde oligomers, suggesting that GAld is capable of forming brown carbon SOA
    • 

    corecore