319 research outputs found
Crystal Graphs and -Analogues of Weight Multiplicities for the Root System
We give an expression of the -analogues of the multiplicities of weights
in irreducible \sl_{n+1}-modules in terms of the geometry of the crystal
graph attached to the corresponding U_q(\sl_{n+1})-modules. As an
application, we describe multivariate polynomial analogues of the
multiplicities of the zero weight, refining Kostant's generalized exponents.Comment: LaTeX file with epic, eepic pictures, 17 pages, November 1994, to
appear in Lett. Math. Phy
An edge-weighted hook formula for labelled trees
A number of hook formulas and hook summation formulas have previously
appeared, involving various classes of trees. One of these classes of trees is
rooted trees with labelled vertices, in which the labels increase along every
chain from the root vertex to a leaf. In this paper we give a new hook
summation formula for these (unordered increasing) trees, by introducing a new
set of indeterminates indexed by pairs of vertices, that we call edge weights.
This new result generalizes a previous result by F\'eray and Goulden, that
arose in the context of representations of the symmetric group via the study of
Kerov's character polynomials. Our proof is by means of a combinatorial
bijection that is a generalization of the Pr\"ufer code for labelled trees.Comment: 25 pages, 9 figures. Author-produced copy of the article to appear in
Journal of Combinatorics, including referee's suggestion
A new representation for the partition function of the six vertex model with domain wall boundaries
We obtain a new representation for the partition function of the six vertex
model with domain wall boundaries using a functional equation recently derived
by the author. This new representation is given in terms of a sum over the
permutation group where the partial homogeneous limit can be taken trivially.
We also show by construction that this partition function satisfies a linear
partial differential equation.Comment: 14 pages, v2: added references, accepted for publication in J. Stat.
Mec
Schur Q-functions and degeneracy locus formulas for morphisms with symmetries
We give closed-form formulas for the fundamental classes of degeneracy loci
associated with vector bundle maps given locally by (not necessary square)
matrices which are symmetric (resp. skew-symmetric) w.r.t. the main diagonal.
Our description uses essentially Schur Q-polynomials of a bundle, and is based
on a certain push-forward formula for these polynomials in a Grassmann bundle.Comment: 22 pages, AMSTEX, misprints corrected, exposition improved. to appear
in the Proceedings of Intersection Theory Conference in Bologna, "Progress in
Mathematics", Birkhause
Enumeration of bigrassmannian permutations below a permutation in Bruhat order
In theory of Coxeter groups, bigrassmannian elements are well known as
elements which have precisely one left descent and precisely one right descent.
In this article, we prove formulas on enumeration of bigrassmannian
permutations weakly below a permutation in Bruhat order in the symmetric
groups. For the proof, we use equivalent characterizations of bigrassmannian
permutations by Lascoux-Schutzenberger and Reading.Comment: 7 pages
Interval structure of the Pieri formula for Grothendieck polynomials
We give a combinatorial interpretation of a Pieri formula for double
Grothendieck polynomials in terms of an interval of the Bruhat order. Another
description had been given by Lenart and Postnikov in terms of chain
enumerations. We use Lascoux's interpretation of a product of Grothendieck
polynomials as a product of two kinds of generators of the 0-Hecke algebra, or
sorting operators. In this way we obtain a direct proof of the result of Lenart
and Postnikov and then prove that the set of permutations occuring in the
result is actually an interval of the Bruhat order.Comment: 27 page
Effective Invariant Theory of Permutation Groups using Representation Theory
Using the theory of representations of the symmetric group, we propose an
algorithm to compute the invariant ring of a permutation group. Our approach
have the goal to reduce the amount of linear algebra computations and exploit a
thinner combinatorial description of the invariant ring.Comment: Draft version, the corrected full version is available at
http://www.springer.com
Some Combinatorial Properties of Hook Lengths, Contents, and Parts of Partitions
This paper proves a generalization of a conjecture of Guoniu Han, inspired
originally by an identity of Nekrasov and Okounkov. The main result states that
certain sums over partitions p of n, involving symmetric functions of the
squares of the hook lengths of p, are polynomial functions of n. A similar
result is obtained for symmetric functions of the contents and shifted parts of
n.Comment: 20 pages. Correction of some inaccuracies, and a new Theorem 4.
- …