446 research outputs found

    Optical turbulence simulations at Mt Graham using the Meso-NH mode

    Full text link
    The mesoscale model Meso-NH is used to simulate the optical turbulence at Mt Graham (Arizona, USA), site of the Large Binocular Telescope. Measurements of the CN2-profiles obtained with a generalized scidar from 41 nights are used to calibrate and quantify the model's ability to reconstruct the optical turbulence. The measurements are distributed over different periods of the year, permitting us to study the model's performance in different seasons. A statistical analysis of the simulations is performed for all the most important astroclimatic parameters: the CN2-profiles, the seeing {\epsilon}, the isoplanatic angle {\theta}0 and the wavefront coherence time {\tau}0. The model shows a general good ability in reconstructing the morphology of the optical turbulence (the shape of the vertical distribution of CN2) as well as the strength of all the integrated astroclimatic parameters. The relative error (with respect to measurements) of the averaged seeing on the whole atmosphere for the whole sample of 41 nights is within 9.0 %. The median value of the relative error night by night is equal to 18.7 %, so that the model still maintains very good performances. Comparable percentages are observed in partial vertical slabs (free atmosphere and boundary layer) and in different seasons (summer and winter). We prove that the most urgent problem, at present, is to increase the ability of the model in reconstructing very weak and very strong turbulence conditions in the high atmosphere. This mainly affects the model's performances for the isoplanatic angle predictions, for which the median value of the relative error night by night is equal to 35.1 %. No major problems are observed for the other astroclimatic parameters. A variant to the standard calibration method is tested but we find that it does not provide better results, confirming the solid base of the standard method.Comment: 12 pages, 12 figures. The definitive version can be found at: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2010.18097.x/abstrac

    Towards the forecast of atmospheric parameters and optical turbulence above an astronomical site on 24h time scale

    Get PDF
    Forecast of the atmospheric parameters and optical turbulence applied to the ground-based astronomy is very crucial mainly for the queue scheduling. So far, most efforts have been addressed by our group in developing algorithms for the optical turbulence (CN2) and annexed integrated astroclimatic parameters and quantifying the performances of the Astro-Meso-Nh package in reconstructing such parameters. Besides, intensive analyses on the Meso-Nh performances= in reconstructing atmospheric parameters relevant for the ground-based astronomy has been carried out. Our studies referred always to the night time regime. To extend the applications of our studies to the day time regime, we present, in this contribution, preliminary results obtained by comparing model outputs and measurements of classical atmospheric parameter relevant for the ground-based astronomy in night and day time. We chose as a test case, the Roque de los Muchachos Observatory (Canary Islands), that offers a very extended set of measurements provided by different sensors belonging to different telescopes on the same summit/Observatory. The convective regime close to the ground typical of the day time is pretty different from the stable regime characterising the night time. This study aims therefore to enlarge the domain of validity of the Astro-Meso-Nh code to new turbulence regimes and it permits to cover the total 24 hours of a day. Such an approach will permit not only an application to solar telescopes (e.g. EST) but also applications to a much extended set of scientific fields, not only in astronomical context such as satellite communications

    A dedicated tool for a full 3D Cn2 investigation

    Full text link
    We present in this study a mapping of the optical turbulence (OT) above different astronomical sites. The mesoscale model Meso-NH was used together with the Astro-Meso-Nh package and a set of diagnostic tools allowing for a full 3D investigation of the Cn2. The diagnostics implemented in the Astro-Meso-Nh, allowing for a full 3D investigation of the OT structure in a volumetric space above different sites, are presented. To illustrate the different diagnostics and their potentialities, we investigated one night and looked at instantaneous fields of meteorologic and astroclimatic parameters. To show the potentialities of this tool for applications in an Observatory we ran the model above sites with very different OT distributions: the antarctic plateau (Dome C, Dome A, South Pole) and a mid-latitude site (Mt. Graham, Arizona). We put particular emphasis on the 2D maps of integrated astroclimatic parameters (seeing, isoplanatic angles) calculated in different slices at different heights in the troposhere. This is an useful tool of prediction and investigation of the turbulence structure. It can support the optimization of the AO, GLAO and MCAO systems running at the focus of the ground-based telescopes.From this studies it emerges that the astronomical sites clearly present different OT behaviors. Besides, our tool allowed us for discriminating these sites.Comment: 7 pages, 5 figures, SPIE 2010 conferenc

    Forecast of surface layer meteorological parameters at Cerro Paranal with a mesoscale atmospherical model

    Get PDF
    This article aims at proving the feasibility of the forecast of all the most relevant classical atmospherical parameters for astronomical applications (wind speed and direction, temperature) above the ESO ground-base site of Cerro Paranal with a mesoscale atmospherical model called Meso-Nh. In a precedent paper we have preliminarily treated the model performances obtained in reconstructing some key atmospherical parameters in the surface layer 0-30~m studying the bias and the RMSE on a statistical sample of 20 nights. Results were very encouraging and it appeared therefore mandatory to confirm such a good result on a much richer statistical sample. In this paper, the study was extended to a total sample of 129 nights between 2007 and 2011 distributed in different parts of the solar year. This large sample made our analysis more robust and definitive in terms of the model performances and permitted us to confirm the excellent performances of the model. Besides, we present an independent analysis of the model performances using the method of the contingency tables. Such a method permitted us to provide complementary key informations with respect to the bias and the RMSE particularly useful for an operational implementation of a forecast system.Comment: 20 pages, 8 figures, 18 tables, published in MNRA

    Wind speed vertical distribution at Mt. Graham

    Full text link
    The characterization of the wind speed vertical distribution V(h) is fundamental for an astronomical site for many different reasons: (1) the wind speed shear contributes to trigger optical turbulence in the whole troposphere, (2) a few of the astroclimatic parameters such as the wavefront coherence time (tau_0) depends directly on V(h), (3) the equivalent velocity V_0, controlling the frequency at which the adaptive optics systems have to run to work properly, depends on the vertical distribution of the wind speed and optical turbulence. Also, a too strong wind speed near the ground can introduce vibrations in the telescope structures. The wind speed at a precise pressure (200 hPa) has frequently been used to retrieve indications concerning the tau_0 and the frequency limits imposed to all instrumentation based on adaptive optics systems, but more recently it has been proved that V_200 (wind speed at 200 hPa) alone is not sufficient to provide exhaustive elements concerning this topic and that the vertical distribution of the wind speed is necessary. In this paper a complete characterization of the vertical distribution of wind speed strength is done above Mt.Graham (Arizona, US), site of the Large Binocular Telescope. We provide a climatological study extended over 10 years using the operational analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF), we prove that this is representative of the wind speed vertical distribution at Mt. Graham with exception of the boundary layer and we prove that a mesoscale model can provide reliable nightly estimates of V(h) above this astronomical site from the ground up to the top of the atmosphere (~ 20 km).Comment: 12 pages, 9 figures (whereof 3 colour), accepted by MNRAS May 27, 201
    • …
    corecore