69 research outputs found

    Fabricación y caracterización de materiales compuestos de alto rendimiento medioambiental derivados de resinas ecológicas y refuerzos de fibras naturales y estructuras híbridas

    Full text link
    Tesis por compendio[ES] Es evidente cómo el aumento de la concienciación medioambiental respecto al uso de materiales poliméricos de origen petroquímico o plásticos de un único uso ha cambiado por completo el panorama de los materiales poliméricos, desde el punto de vista de su concepción o de su uso. Durante el desarrollo de esta tesis doctoral se ha abarcado varias alternativas con el fin de obtener materiales nuevos, que no tengan solo un bajo impacto ambiental, sino también que posean propiedades competitivas al compararlos con materiales convencionales, además de que su elaboración no conlleve un cambio drástico con respecto a las tecnologías existentes en la actualidad. Es por eso por lo que el objetivo principal de esta tesis doctoral se centra en el desarrollo y caracterización de nuevos materiales con un alto rendimiento medioambiental a partir de matrices termoplásticas como el poli(ácido láctico) (PLA) y matrices termoestables como resinas epoxi con un contenido parcial o total de origen natural. Además del uso de rellenos y fibras de origen natural.[CA] És evident com l'augment de la conscienciació mediambiental respecte a l'ús de materials polimèrics d'origen petroquímic o plàstics d'un únic ús ha canviat per complet el panorama dels materials polimèrics, des del punt de vista de la seua concepció o del seu ús. Durant el desenvolupament d'aquesta tesi doctoral s'han tingut en compte diverses alternatives amb la finalitat d'obtindre materials nous, que no tinguen només un baix impacte ambiental, sinó també que posseïsquen propietats competitives en comparar-los amb materials convencionals, a més de que la seua elaboració no comporte un canvi dràstic respecte a les tecnologies existents en l'actualitat. És per això, per la qual cosa l'objectiu principal d'aquesta tesi doctoral se centra en el desenvolupament i caracterització de nous materials amb un alt rendiment mediambiental a partir de matrius termoplàstiques com el àcid polilàctic (PLA) i matrius termoestables com a resines epoxi amb un contingut parcial o total d'origen natural. A més de l'ús de reforços i fibres d'origen natural.[EN] It is remarkable how the increase in environmental awareness regarding the use of polymeric materials of petrochemical origin or single-use plastics has completely changed the scenario of polymeric materials development and use. This doctoral thesis has proposed several alternatives in order to obtain new materials with low environmental impact and competitive properties to conventional materials. In addition to the fact that their elaboration does not entail a drastic change respect to existing technologies. Therefore, the main objective of this doctoral thesis focuses on developing and characterizing new materials with a high environmental performance from thermoplastic matrices such as poly(lactic acid) (PLA) and thermosetting matrices such as epoxy resins with a partial or total content of natural origin. In addition to the use of fillers and fibers of natural origin.This research work was funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) project numbers RTI2018-097249-B-C21 and MAT2017-84909-C2-2-R. D.L. thanks Universitat Politècnica de València (UPV) for the grant received through the PAID-01-18 program.Lascano Aimacaña, DS. (2022). Fabricación y caracterización de materiales compuestos de alto rendimiento medioambiental derivados de resinas ecológicas y refuerzos de fibras naturales y estructuras híbridas [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185886TESISCompendi

    Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites

    Full text link
    [EN] Maleinized linseed oil (MLO) has been successfully used as biobased compatibilizer in polyester blends. Its effciency as compatibilizer in polymer composites with organic and inorganic fillers, compared to other traditional fillers, has also been proved. The goal of this work is to optimize the amount of MLO on poly(lactic acid)/diatomaceous earth (PLA/DE) composites to open new potential to these materials in the active packaging industry without compromising the environmental effciency of these composites. The amount of DE remains constant at 10 wt% and MLO varies from 1 to 15 phr (weight parts of MLO per 100 g of PLA/DE composite). The e ect of MLO on mechanical, thermal, thermomechanical and morphological properties is described in this work. The obtained results show a clear embrittlement of the uncompatibilized PLA/DE composites, which is progressively reduced by the addition of MLO. MLO shows good miscibility at low concentrations (lower than 5 phr) while above 5 phr, a clear phase separation phenomenon can be detected, with the formation of rounded microvoids and shapes which have a positive e ect on impact strength.This research was funded by the Ministry of Science, Innovation, and Universities (MICIU) project number MAT2017-84909-C2-2-R. L. Quiles-Carrillo is recipient of a FPU grant (FPU15/03812) from the Spanish Ministry of Education, Culture, and Sports (MECD). D. Lascano acknowledges UPV for the grant received though the PAID-01-18 program. N. Montanes acknowledges the project "Development and production of new material from revalued industrial wastes for technological sector applications" for partially funding this research.Gonzalez, L.; Agüero, Á.; Quiles-Carrillo, L.; Lascano-Aimacaña, DS.; Montanes, N. (2019). Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites. Materials. 12(10):1-15. https://doi.org/10.3390/ma12101627S115121

    Manufacturing and Characterization of Functionalized Aliphatic Polyester from Poly(lactic acid) with Halloysite Nanotubes

    Full text link
    [EN] This work reports the potential of poly(lactic acid)-PLA composites with different halloysite nanotube (HNTs) loading (3, 6 and 9 wt%) for further uses in advanced applications as HNTs could be used as carriers for active compounds for medicine, packaging and other sectors. This work focuses on the effect of HNTs on mechanical, thermal, thermomechanical and degradation of PLA composites with HNTs. These composites can be manufactured by conventional extrusion-compounding followed by injection molding. The obtained results indicate a slight decrease in tensile and flexural strength as well as in elongation at break, both properties related to material cohesion. On the contrary, the stiffness increases with the HNTs content. The tensile strength and modulus change from 64.6 MPa/2.1 GPa (neat PLA) to 57.7/2.3 GPa MPa for the composite with 9 wt% HNTs. The elongation at break decreases from 6.1% (neat PLA) down to a half for composites with 9 wt% HNTs. Regarding flexural properties, the flexural strength and modulus change from 116.1 MPa and 3.6 GPa respectively for neat PLA to values of 107.6 MPa and 3.9 GPa for the composite with 9 wt% HNTs. HNTs do not affect the glass transition temperature with invariable values of about 64 degrees C, or the melt peak temperature, while they move the cold crystallization process towards lower values, from 112.4 degrees C for neat PLA down to 105.4 degrees C for the composite containing 9 wt% HNTs. The water uptake has been assessed to study the influence of HNTs on the water saturation. HNTs contribute to increased hydrophilicity with a change in the asymptotic water uptake from 0.95% (neat PLA) up to 1.67% (PLA with 9 wt % HNTs) and the effect of HNTs on disintegration in controlled compost soil has been carried out to see the influence of HNTs on this process, which is a slight delay on it. These PLA-HNT composites show good balanced properties and could represent an interesting solution to develop active materials.This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) through the MAT2017-84909-C2-2-R program number. D. Lascano wants to thank UPV for the grant received though the PAID-01-18 program. Microscopy services at UPV are acknowledged for their help in collecting and analyzing FESEM images.Montava-Jorda, S.; Chacon, V.; Lascano-Aimacaña, DS.; Sanchez-Nacher, L.; Montanes, N. (2019). Manufacturing and Characterization of Functionalized Aliphatic Polyester from Poly(lactic acid) with Halloysite Nanotubes. Polymers. 11(8):1-21. https://doi.org/10.3390/polym11081314S121118Andreeßen, C., & Steinbüchel, A. (2018). Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives. Applied Microbiology and Biotechnology, 103(1), 143-157. doi:10.1007/s00253-018-9483-6Djukić-Vuković, A., Mladenović, D., Ivanović, J., Pejin, J., & Mojović, L. (2019). Towards sustainability of lactic acid and poly-lactic acid polymers production. Renewable and Sustainable Energy Reviews, 108, 238-252. doi:10.1016/j.rser.2019.03.050Matson, J. B., & Baker, M. B. (2019). Polymers for biology, medicine and sustainability. Polymer International, 68(7), 1219-1219. doi:10.1002/pi.5829Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421Scaffaro, R., Maio, A., Sutera, F., Gulino, E., & Morreale, M. (2019). Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers, 11(4), 651. doi:10.3390/polym11040651Li, Y., Chu, Z., Li, X., Ding, X., Guo, M., Zhao, H., … Fan, Y. (2017). The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters. Regenerative Biomaterials, 4(3), 179-190. doi:10.1093/rb/rbx009González, E. A. S., Olmos, D., Lorente, M. Á., Vélaz, I., & González-Benito, J. (2018). Preparation and Characterization of Polymer Composite Materials Based on PLA/TiO2 for Antibacterial Packaging. Polymers, 10(12), 1365. doi:10.3390/polym10121365Li, Y., Liao, C., & Tjong, S. C. (2019). Synthetic Biodegradable Aliphatic Polyester Nanocomposites Reinforced with Nanohydroxyapatite and/or Graphene Oxide for Bone Tissue Engineering Applications. Nanomaterials, 9(4), 590. doi:10.3390/nano9040590Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design, 68, 177-185. doi:10.1016/j.matdes.2014.12.027Filgueira, D., Holmen, S., Melbø, J., Moldes, D., Echtermeyer, A., & Chinga-Carrasco, G. (2018). 3D Printable Filaments Made of Biobased Polyethylene Biocomposites. Polymers, 10(3), 314. doi:10.3390/polym10030314Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940Samper-Madrigal, M. D., Fenollar, O., Dominici, F., Balart, R., & Kenny, J. M. (2014). The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. Journal of Materials Science, 50(2), 863-872. doi:10.1007/s10853-014-8647-8Yu, X., Wang, X., Zhang, Z., Peng, S., Chen, H., & Zhao, X. (2019). High-performance fully bio-based poly(lactic acid)/ polyamide11 (PLA/PA11) blends by reactive blending with multi-functionalized epoxy. Polymer Testing, 78, 105980. doi:10.1016/j.polymertesting.2019.105980Gandini, A., Lacerda, T. M., Carvalho, A. J. F., & Trovatti, E. (2015). Progress of Polymers from Renewable Resources: Furans, Vegetable Oils, and Polysaccharides. Chemical Reviews, 116(3), 1637-1669. doi:10.1021/acs.chemrev.5b00264Abedini, F., Ebrahimi, M., Roozbehani, A. H., Domb, A. J., & Hosseinkhani, H. (2018). Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polymers for Advanced Technologies, 29(10), 2564-2573. doi:10.1002/pat.4375Riaz Rajoka, M. S., Zhao, L., Mehwish, H. M., Wu, Y., & Mahmood, S. (2019). Chitosan and its derivatives: synthesis, biotechnological applications, and future challenges. Applied Microbiology and Biotechnology, 103(4), 1557-1571. doi:10.1007/s00253-018-9550-zFerrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix and posidonia oceanica waste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042DeFrates, K., Markiewicz, T., Gallo, P., Rack, A., Weyhmiller, A., Jarmusik, B., & Hu, X. (2018). Protein Polymer-Based Nanoparticles: Fabrication and Medical Applications. International Journal of Molecular Sciences, 19(6), 1717. doi:10.3390/ijms19061717Rai, K., Sun, Y., Shaliutina-Kolesova, A., Nian, R., & Xian, M. (2018). Proteins: Natural Polymers for Tissue Engineering. Journal of Biomaterials and Tissue Engineering, 8(3), 295-308. doi:10.1166/jbt.2018.1753Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057Haddadi, M. H., Asadolahi, R., & Negahdari, B. (2019). The bioextraction of bioplastics with focus on polyhydroxybutyrate: a review. International Journal of Environmental Science and Technology, 16(7), 3935-3948. doi:10.1007/s13762-019-02352-0Zubir, N. H. M., Sam, S. T., Zulkepli, N. N., & Omar, M. F. (2017). The effect of rice straw particulate loading and polyethylene glycol as plasticizer on the properties of polylactic acid/polyhydroxybutyrate-valerate blends. Polymer Bulletin, 75(1), 61-76. doi:10.1007/s00289-017-2018-yGarcia-Garcia, D., Garcia-Sanoguera, D., Fombuena, V., Lopez-Martinez, J., & Balart, R. (2018). Improvement of mechanical and thermal properties of poly(3-hydroxybutyrate) (PHB) blends with surface-modified halloysite nanotubes (HNT). Applied Clay Science, 162, 487-498. doi:10.1016/j.clay.2018.06.042Pramanik, N., Bhattacharya, S., Rath, T., De, J., Adhikary, A., Basu, R. K., & Kundu, P. P. (2019). Polyhydroxybutyrate-co-hydroxyvalerate copolymer modified graphite oxide based 3D scaffold for tissue engineering application. Materials Science and Engineering: C, 94, 534-546. doi:10.1016/j.msec.2018.10.009Quiles-Carrillo, L., Montanes, N., Jorda-Vilaplana, A., Balart, R., & Torres-Giner, S. (2018). A comparative study on the effect of different reactive compatibilizers on injection-molded pieces of bio-based high-density polyethylene/polylactide blends. Journal of Applied Polymer Science, 136(16), 47396. doi:10.1002/app.47396Liu, Y., Wei, H., Wang, Z., Li, Q., & Tian, N. (2018). Simultaneous Enhancement of Strength and Toughness of PLA Induced by Miscibility Variation with PVA. Polymers, 10(10), 1178. doi:10.3390/polym10101178Behera, K., Sivanjineyulu, V., Chang, Y.-H., & Chiu, F.-C. (2018). Thermal properties, phase morphology and stability of biodegradable PLA/PBSL/HAp composites. Polymer Degradation and Stability, 154, 248-260. doi:10.1016/j.polymdegradstab.2018.06.010Notta-Cuvier, D., Odent, J., Delille, R., Murariu, M., Lauro, F., Raquez, J. M., … Dubois, P. (2014). Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties. Polymer Testing, 36, 1-9. doi:10.1016/j.polymertesting.2014.03.007Zhang, L., Lv, S., Sun, C., Wan, L., Tan, H., & Zhang, Y. (2017). Effect of MAH-g-PLA on the Properties of Wood Fiber/Polylactic Acid Composites. Polymers, 9(11), 591. doi:10.3390/polym9110591Jiang, Y., Yan, C., Wang, K., Shi, D., Liu, Z., & Yang, M. (2019). Super-Toughed PLA Blown Film with Enhanced Gas Barrier Property Available for Packaging and Agricultural Applications. Materials, 12(10), 1663. doi:10.3390/ma12101663Radusin, T., Tomšik, A., Šarić, L., Ristić, I., Giacinti Baschetti, M., Minelli, M., & Novaković, A. (2018). Hybrid Pla/wild garlic antimicrobial composite films for food packaging application. Polymer Composites, 40(3), 893-900. doi:10.1002/pc.24755Łopusiewicz, Ł., Jędra, F., & Mizielińska, M. (2018). New Poly(lactic acid) Active Packaging Composite Films Incorporated with Fungal Melanin. Polymers, 10(4), 386. doi:10.3390/polym10040386Behera, K., Chang, Y.-H., Chiu, F.-C., & Yang, J.-C. (2017). Characterization of poly(lactic acid)s with reduced molecular weight fabricated through an autoclave process. Polymer Testing, 60, 132-139. doi:10.1016/j.polymertesting.2017.03.015Matos, B. D. M., Rocha, V., da Silva, E. J., Moro, F. H., Bottene, A. C., Ribeiro, C. A., … Silva Barud, H. da. (2018). Evaluation of commercially available polylactic acid (PLA) filaments for 3D printing applications. Journal of Thermal Analysis and Calorimetry, 137(2), 555-562. doi:10.1007/s10973-018-7967-3Alturkestany, M. T., Panchal, V., & Thompson, M. R. (2018). Improved part strength for the fused deposition 3D printing technique by chemical modification of polylactic acid. Polymer Engineering & Science, 59(s2), E59-E64. doi:10.1002/pen.24955Fairag, R., Rosenzweig, D. H., Ramirez-Garcialuna, J. L., Weber, M. H., & Haglund, L. (2019). Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro. ACS Applied Materials & Interfaces, 11(17), 15306-15315. doi:10.1021/acsami.9b02502Sanatgar, R. H., Cayla, A., Campagne, C., & Nierstrasz, V. (2018). Morphological and electrical characterization of conductive polylactic acid based nanocomposite before and after FDM 3D printing. Journal of Applied Polymer Science, 136(6), 47040. doi:10.1002/app.47040Song, B., Li, W., Chen, Z., Fu, G., Li, C., Liu, W., … Ding, Y. (2017). Biomechanical comparison of pure magnesium interference screw and polylactic acid polymer interference screw in anterior cruciate ligament reconstruction—A cadaveric experimental study. Journal of Orthopaedic Translation, 8, 32-39. doi:10.1016/j.jot.2016.09.001Leksakul, K., & Phuendee, M. (2018). Development of hydroxyapatite-polylactic acid composite bone fixation plate. Science and Engineering of Composite Materials, 25(5), 903-914. doi:10.1515/secm-2016-0359Zhan, X., Guo, X., Liu, R., Hu, W., Zhang, L., & Xiang, N. (2017). Intervention using a novel biodegradable hollow stent containing polylactic acid-polyprolactone-polyethylene glycol complexes against lacrimal duct obstruction disease. PLOS ONE, 12(6), e0178679. doi:10.1371/journal.pone.0178679Chen, Y., Murphy, A., Scholz, D., Geever, L. M., Lyons, J. G., & Devine, D. M. (2018). Surface-modified halloysite nanotubes reinforced poly(lactic acid) for use in biodegradable coronary stents. Journal of Applied Polymer Science, 135(30), 46521. doi:10.1002/app.46521Dillon, Doran, Fuenmayor, Healy, Gately, Major, & Lyons. (2019). The Influence of Low Shear Microbore Extrusion on the Properties of High Molecular Weight Poly(l-Lactic Acid) for Medical Tubing Applications. Polymers, 11(4), 710. doi:10.3390/polym11040710Haroosh, H. J., Dong, Y., & Lau, K.-T. (2014). Tetracycline hydrochloride (TCH)-loaded drug carrier based on PLA:PCL nanofibre mats: experimental characterisation and release kinetics modelling. Journal of Materials Science, 49(18), 6270-6281. doi:10.1007/s10853-014-8352-7Park, J.-W., Shin, J.-H., Shim, G.-S., Sim, K.-B., Jang, S.-W., & Kim, H.-J. (2019). Mechanical Strength Enhancement of Polylactic Acid Hybrid Composites. Polymers, 11(2), 349. doi:10.3390/polym11020349Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348Jamróz, E., Kulawik, P., & Kopel, P. (2019). The Effect of Nanofillers on the Functional Properties of Biopolymer-Based Films: A Review. Polymers, 11(4), 675. doi:10.3390/polym11040675Huang, T., Qian, Y., Wei, J., & Zhou, C. (2019). Polymeric Antimicrobial Food Packaging and Its Applications. Polymers, 11(3), 560. doi:10.3390/polym11030560Sharmeen, S., Rahman, A. F. M. M., Lubna, M. M., Salem, K. S., Islam, R., & Khan, M. A. (2018). Polyethylene glycol functionalized carbon nanotubes/gelatin-chitosan nanocomposite: An approach for significant drug release. Bioactive Materials, 3(3), 236-244. doi:10.1016/j.bioactmat.2018.03.001Arul Xavier, S., & U., V. (2018). Electrochemically grown functionalized -Multi-walled carbon nanotubes/hydroxyapatite hybrids on surgical grade 316L SS with enhanced corrosion resistance and bioactivity. Colloids and Surfaces B: Biointerfaces, 171, 186-196. doi:10.1016/j.colsurfb.2018.06.058Van den Broeck, L., Piluso, S., Soultan, A. H., De Volder, M., & Patterson, J. (2019). Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering. Materials Science and Engineering: C, 98, 1133-1144. doi:10.1016/j.msec.2019.01.020Zhang, X., Zhang, D., Peng, Q., Lin, J., & Wen, C. (2019). Biocompatibility of Nanoscale Hydroxyapatite Coating on TiO2 Nanotubes. Materials, 12(12), 1979. doi:10.3390/ma12121979Beke, S., Barenghi, R., Farkas, B., Romano, I., Kőrösi, L., Scaglione, S., & Brandi, F. (2014). Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings. Materials Science and Engineering: C, 44, 38-43. doi:10.1016/j.msec.2014.07.008Chandanshive, B. B., Rai, P., Rossi, A. L., Ersen, O., & Khushalani, D. (2013). Synthesis of hydroxyapatite nanotubes for biomedical applications. Materials Science and Engineering: C, 33(5), 2981-2986. doi:10.1016/j.msec.2013.03.022Zhang, Y., Nayak, T., Hong, H., & Cai, W. (2013). Biomedical Applications of Zinc Oxide Nanomaterials. Current Molecular Medicine, 13(10), 1633-1645. doi:10.2174/1566524013666131111130058Garcia-Garcia, D., Ferri, J. M., Ripoll, L., Hidalgo, M., Lopez-Martinez, J., & Balart, R. (2017). Characterization of selectively etched halloysite nanotubes by acid treatment. Applied Surface Science, 422, 616-625. doi:10.1016/j.apsusc.2017.06.104Venkatesh, C., Clear, O., Major, I., Lyons, J. G., & Devine, D. M. (2019). Faster Release of Lumen-Loaded Drugs than Matrix-Loaded Equivalent in Polylactic Acid/Halloysite Nanotubes. Materials, 12(11), 1830. doi:10.3390/ma12111830Pluta, M., Bojda, J., Piorkowska, E., Murariu, M., Bonnaud, L., & Dubois, P. (2017). The effect of halloysite nanotubes and N,N′-ethylenebis (stearamide) on morphology and properties of polylactide nanocomposites with crystalline matrix. Polymer Testing, 64, 83-91. doi:10.1016/j.polymertesting.2017.09.013Yin, X., Wang, L., Li, S., He, G., & Yang, Z. (2017). Effects of surface modification of halloysite nanotubes on the morphology and the thermal and rheological properties of polypropylene/halloysite composites. Journal of Polymer Engineering, 38(2), 119-127. doi:10.1515/polyeng-2017-0025Padhi, S., Achary, P. G. R., & Nayak, N. C. (2017). Mechanical and morphological properties of modified halloysite nanotube filled ethylene-vinyl acetate copolymer nanocomposites. Journal of Polymer Engineering, 38(3), 271-279. doi:10.1515/polyeng-2017-0075Gorrasi, G., Bugatti, V., Ussia, M., Mendichi, R., Zampino, D., Puglisi, C., & Carroccio, S. C. (2018). Halloysite nanotubes and thymol as photo protectors of biobased polyamide 11. Polymer Degradation and Stability, 152, 43-51. doi:10.1016/j.polymdegradstab.2018.03.015Massaro, M., Cavallaro, G., Colletti, C. G., D’Azzo, G., Guernelli, S., Lazzara, G., … Riela, S. (2018). Halloysite nanotubes for efficient loading, stabilization and controlled release of insulin. Journal of Colloid and Interface Science, 524, 156-164. doi:10.1016/j.jcis.2018.04.025Sikora, J. W., Gajdoš, I., & Puszka, A. (2019). Polyethylene-Matrix Composites with Halloysite Nanotubes with Enhanced Physical/Thermal Properties. Polymers, 11(5), 787. doi:10.3390/polym11050787Therias, S., Murariu, M., & Dubois, P. (2017). Bionanocomposites based on PLA and halloysite nanotubes: From key properties to photooxidative degradation. Polymer Degradation and Stability, 145, 60-69. doi:10.1016/j.polymdegradstab.2017.06.008Saeidlou, S., Huneault, M. A., Li, H., & Park, C. B. (2012). Poly(lactic acid) crystallization. Progress in Polymer Science, 37(12), 1657-1677. doi:10.1016/j.progpolymsci.2012.07.005Ke, T., & Sun, X. (2001). Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. Journal of Applied Polymer Science, 81(12), 3069-3082. doi:10.1002/app.1758Fischer, E. W., Sterzel, H. J., & Wegner, G. (1973). Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Zeitschrift und Zeitschrift für Polymere, 251(11), 980-990. doi:10.1007/bf01498927Li, Y., Venkateshan, K., & Sun, X. S. (2010). Mechanical and thermal properties, morphology and relaxation characteristics of poly(lactic acid) and soy flour/wood flour blends. Polymer International, n/a-n/a. doi:10.1002/pi.2834Russo, P., Cammarano, S., Bilotti, E., Peijs, T., Cerruti, P., & Acierno, D. (2013). Physical properties of poly lactic acid/clay nanocomposite films: Effect of filler content and annealing treatment. Journal of Applied Polymer Science, 131(2), n/a-n/a. doi:10.1002/app.39798Prashantha, K., Lecouvet, B., Sclavons, M., Lacrampe, M. F., & Krawczak, P. (2012). Poly(lactic acid)/halloysite nanotubes nanocomposites: Structure, thermal, and mechanical properties as a function of halloysite treatment. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.38358De Silva, R. T., Soheilmoghaddam, M., Goh, K. L., Wahit, M. U., Bee, S. A. H., Chai, S.-P., & Pasbakhsh, P. (2014). Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites. Polymer Composites, 37(3), 861-869. doi:10.1002/pc.23244De Silva, R., Pasbakhsh, P., Goh, K., Chai, S.-P., & Chen, J. (2013). Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films. Journal of Composite Materials, 48(30), 3705-3717. doi:10.1177/0021998313513046Pracella, M., Haque, M. M.-U., & Puglia, D. (2014). Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer, 55(16), 3720-3728. doi:10.1016/j.polymer.2014.06.071Kontou, E., Niaounakis, M., & Georgiopoulos, P. (2011). Comparative study of PLA nanocomposites reinforced with clay and silica nanofillers and their mixtures. Journal of Applied Polymer Science, 122(3), 1519-1529. doi:10.1002/app.34234Chen, Y., Geever, L. M., Killion, J. A., Lyons, J. G., Higginbotham, C. L., & Devine, D. M. (2015). Halloysite nanotube reinforced polylactic acid composite. Polymer Composite

    Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness

    Full text link
    [EN] This research deals with the influence of different curing and post-curing temperatures on the mechanical and thermomechanical properties as well as the gel time of an epoxy resin prepared by the reaction of diglycidyl ether of bisphenol A (DGEBA) with an amine hardener and a reactive diluent derived from plants at 31 wt %. The highest performance was obtained for the resins cured at moderate-to-high temperatures, that is, 80 degrees C and 90 degrees C, which additionally showed a significant reduction in the gel time. This effect was ascribed to the formation of a stronger polymer network by an extended cross-linking process of the polymer chains during the resin manufacturing. Furthermore, post-curing at either 125 degrees C or 150 degrees C yielded thermosets with higher mechanical strength and, more interestingly, improved toughness, particularly for the samples previously cured at moderate temperatures. In particular, the partially bio-based epoxy resin cured at 80 degrees C and post-cured at 150 degrees C for 1 h and 30 min, respectively, showed the most balanced performance due to the formation of a more homogeneous cross-linked structure.This research was supported by the Spanish Ministry of Science, Innovation, and Universities (MICIU) through the MAT2017-84909-C2-2-R program number. D.L. acknowledges Universitat Politècnica de València (UPV) for the grant received through the PAID-01-18 program. L.Q.-C. wants to thank the Generalitat Valenciana (GVA) for his FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812). S.T.-G. is a recipient of a Juan de la Cierva¿Incorporación contract (IJCI-2016-29675) from MICIU.Lascano-Aimacaña, DS.; Quiles-Carrillo, L.; Torres-Giner, S.; Boronat, T.; Montanes, N. (2019). Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness. Polymers. 11(8):1-15. https://doi.org/10.3390/polym11081354S115118Jin, F.-L., Li, X., & Park, S.-J. (2015). Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry, 29, 1-11. doi:10.1016/j.jiec.2015.03.026Yu, S., Li, X., Guo, X., Li, Z., & Zou, M. (2019). Curing and Characteristics of N,N,N′,N′-Tetraepoxypropyl-4,4′-Diaminodiphenylmethane Epoxy Resin-Based Buoyancy Material. Polymers, 11(7), 1137. doi:10.3390/polym11071137Njuguna, J., Pielichowski, K., & Alcock, J. R. (2007). Epoxy-Based Fibre Reinforced Nanocomposites. Advanced Engineering Materials, 9(10), 835-847. doi:10.1002/adem.200700118Holbery, J., & Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. JOM, 58(11), 80-86. doi:10.1007/s11837-006-0234-2Jin, N. J., Seung, I., Choi, Y. S., & Yeon, J. (2017). Prediction of early-age compressive strength of epoxy resin concrete using the maturity method. Construction and Building Materials, 152, 990-998. doi:10.1016/j.conbuildmat.2017.07.066Yin, Y.-B., Yang, Q.-S., Wang, S.-L., Gao, H.-D., He, Y.-W., & Li, X.-L. (2019). Formation of CO2 bubbles in epoxy resin coatings: A DFT study. Journal of Molecular Graphics and Modelling, 86, 192-198. doi:10.1016/j.jmgm.2018.10.018Jin, F.-L., & Park, S.-J. (2008). Thermomechanical behavior of epoxy resins modified with epoxidized vegetable oils. Polymer International, 57(4), 577-583. doi:10.1002/pi.2280Kim, Kim, Hwang, & Kim. (2019). Embedded Based Real-Time Monitoring in the High-Pressure Resin Transfer Molding Process for CFRP. Applied Sciences, 9(9), 1795. doi:10.3390/app9091795Rudawska, A. (2019). The Impact of the Seasoning Conditions on Mechanical Properties of Modified and Unmodified Epoxy Adhesive Compounds. Polymers, 11(5), 804. doi:10.3390/polym11050804Enns, J. B., & Gillham, J. K. (1983). Effect of the extent of cure on the modulus, glass transition, water absorptio, and density of an amine-cured epoxy. Journal of Applied Polymer Science, 28(9), 2831-2846. doi:10.1002/app.1983.070280914Ivankovic, M., Incarnato, L., Kenny, J. M., & Nicolais, L. (2003). Curing kinetics and chemorheology of epoxy/anhydride system. Journal of Applied Polymer Science, 90(11), 3012-3019. doi:10.1002/app.12976Zilg, C., Mülhaupt, R., & Finter, J. (1999). Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates. Macromolecular Chemistry and Physics, 200(3), 661-670. doi:10.1002/(sici)1521-3935(19990301)200:33.0.co;2-4Zheng, T., Wang, X., Lu, C., Zhang, X., Ji, Y., Bai, C., … Qiao, Y. (2019). Studies on Curing Kinetics and Tensile Properties of Silica-Filled Phenolic Amine/Epoxy Resin Nanocomposite. Polymers, 11(4), 680. doi:10.3390/polym11040680Guermazi, N., Haddar, N., Elleuch, K., & Ayedi, H. F. (2014). Investigations on the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the reinforcement and the repair of aeronautic structures. Materials & Design (1980-2015), 56, 714-724. doi:10.1016/j.matdes.2013.11.043Park, S.-J., Seo, M.-K., & Lee, J.-R. (2000). Isothermal cure kinetics of epoxy/phenol-novolac resin blend system initiated by cationic latent thermal catalyst. Journal of Polymer Science Part A: Polymer Chemistry, 38(16), 2945-2956. doi:10.1002/1099-0518(20000815)38:163.0.co;2-6Mostovoy, S., & Ripling, E. J. (1966). Fracture toughness of an epoxy system. Journal of Applied Polymer Science, 10(9), 1351-1371. doi:10.1002/app.1966.070100913Fu, K., Xie, Q., LÜ, F., Duan, Q., Wang, X., Zhu, Q., & Huang, Z. (2019). Molecular Dynamics Simulation and Experimental Studies on the Thermomechanical Properties of Epoxy Resin with Different Anhydride Curing Agents. Polymers, 11(6), 975. doi:10.3390/polym11060975Kenyon, A. S., & Nielsen, L. E. (1969). Characterization of Network Structure of Epoxy Resins by Dynamic Mechanical and Liquid Swelling Tests. Journal of Macromolecular Science: Part A - Chemistry, 3(2), 275-295. doi:10.1080/10601326908053811Czub, P. (2006). Application of Modified Natural Oils as Reactive Diluents for Epoxy Resins. Macromolecular Symposia, 242(1), 60-64. doi:10.1002/masy.200651010Park, Y. T., Qian, Y., Chan, C., Suh, T., Nejhad, M. G., Macosko, C. W., & Stein, A. (2014). Epoxy Toughening with Low Graphene Loading. Advanced Functional Materials, 25(4), 575-585. doi:10.1002/adfm.201402553Okabe, H., Nishimura, H., Hara, K., & Kai, S. (1997). Gelation and Glass Transition in Thermosetting Process of Epoxy Resin. Progress of Theoretical Physics Supplement, 126, 119-122. doi:10.1143/ptps.126.119Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037Khot, S. N., Lascala, J. J., Can, E., Morye, S. S., Williams, G. I., Palmese, G. R., … Wool, R. P. (2001). Development and application of triglyceride-based polymers and composites. Journal of Applied Polymer Science, 82(3), 703-723. doi:10.1002/app.1897Jaillet, F., Desroches, M., Auvergne, R., Boutevin, B., & Caillol, S. (2013). New biobased carboxylic acid hardeners for epoxy resins. European Journal of Lipid Science and Technology, 115(6), 698-708. doi:10.1002/ejlt.201200363Stemmelen, M., Lapinte, V., Habas, J.-P., & Robin, J.-J. (2015). Plant oil-based epoxy resins from fatty diamines and epoxidized vegetable oil. European Polymer Journal, 68, 536-545. doi:10.1016/j.eurpolymj.2015.03.062Pethrick, R. A., Hollins, E. A., McEwan, I., Pollock, E. A., Hayward, D., & Johncock, P. (1996). Effect of Cure Temperature on the Structure and Water Absorption of Epoxy/Amine Thermosets. Polymer International, 39(4), 275-288. doi:10.1002/(sici)1097-0126(199604)39:43.0.co;2-iBarton, J. M., Hamerton, I., Howlin, B. J., Jones, J. R., & Liu, S. (1998). Studies of cure schedule and final property relationships of a commercial epoxy resin using modified imidazole curing agents. Polymer, 39(10), 1929-1937. doi:10.1016/s0032-3861(97)00372-8Kotnarowska, D. (1999). Influence of ultraviolet radiation and aggressive media on epoxy coating degradation. Progress in Organic Coatings, 37(3-4), 149-159. doi:10.1016/s0300-9440(99)00070-3Imanaka, M., Liu, X., & Kimoto, M. (2017). Comparison of fracture behavior between acrylic and epoxy adhesives. International Journal of Adhesion and Adhesives, 75, 31-39. doi:10.1016/j.ijadhadh.2017.02.011Lascano, D., Quiles-Carrillo, L., Balart, R., Boronat, T., & Montanes, N. (2019). Kinetic Analysis of the Curing of a Partially Biobased Epoxy Resin Using Dynamic Differential Scanning Calorimetry. Polymers, 11(3), 391. doi:10.3390/polym11030391Lambert, C., Larroque, M., Subirats, J. T., & Gérard, J. (1998). Food‐contact epoxy resin: Co‐variation between migration and degree of cross‐linking. Part II. Food Additives and Contaminants, 15(3), 318-328. doi:10.1080/02652039809374647Bueche, F. (1957). Tensile strength of rubbers. Journal of Polymer Science, 24(106), 189-200. doi:10.1002/pol.1957.1202410603Levita, G., De Petris, S., Marchetti, A., & Lazzeri, A. (1991). Crosslink density and fracture toughness of epoxy resins. Journal of Materials Science, 26(9), 2348-2352. doi:10.1007/bf01130180Min, B.-G., Hodgkin, J. H., & Stachurski, Z. H. (1993). The dependence of fracture properties on cure temperature in a DGEBA/DDS epoxy system. Journal of Applied Polymer Science, 48(7), 1303-1312. doi:10.1002/app.1993.070480719Turk, M., Hamerton, I., & Ivanov, D. S. (2017). Ductility potential of brittle epoxies: Thermomechanical behaviour of plastically-deformed fully-cured composite resins. Polymer, 120, 43-51. doi:10.1016/j.polymer.2017.05.052Gupta, V. B., & Brahatheeswaran, C. (1991). Molecular packing and free volume in crosslinked epoxy networks. Polymer, 32(10), 1875-1884. doi:10.1016/0032-3861(91)90379-wKarkanas, P. I., & Partridge, I. K. (2000). Cure modeling and monitoring of epoxy/amine resin systems. I. Cure kinetics modeling. Journal of Applied Polymer Science, 77(7), 1419-1431. doi:10.1002/1097-4628(20000815)77:73.0.co;2-nWoo, E. M., & Seferis, J. C. (1990). Cure kinetics of epoxy/anhydride thermosetting matrix systems. Journal of Applied Polymer Science, 40(78), 1237-1256. doi:10.1002/app.1990.070400713Karger-Kocsis, J., Grishchuk, S., Sorochynska, L., & Rong, M. Z. (2013). Curing, gelling, thermomechanical, and thermal decomposition behaviors of anhydride-cured epoxy (DGEBA)/epoxidized soybean oil compositions. Polymer Engineering & Science, 54(4), 747-755. doi:10.1002/pen.23605Dyakonov, T., Chen, Y., Holland, K., Drbohlav, J., Burns, D., Velde, D. V., … Stevenson, W. T. K. (1996). Thermal analysis of some aromatic amine cured model epoxy resin systems—I: Materials synthesis and characterization, cure and post-cure. Polymer Degradation and Stability, 53(2), 217-242. doi:10.1016/0141-3910(96)00085-7Chang, T. D., Carr, S. H., & Brittain, J. O. (1982). Studies of epoxy resin systems: Part B: Effect of crosslinking on the physical properties of an epoxy resin. Polymer Engineering and Science, 22(18), 1213-1220. doi:10.1002/pen.760221807Wu, C.-S. (1992). Influence of post-curing and temperature effects on bulk density, glass transition and stress-strain behaviour of imidazole-cured epoxy network. Journal of Materials Science, 27(11), 2952-2959. doi:10.1007/bf0115410

    Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance

    Full text link
    [EN] This work reports the development and characterization of green composites based on polylactide (PLA) containing fillers and additives obtained from by-products or waste-streams from the linen processing industry. Flaxseed flour (FSF) was first produced by the mechanical milling of golden flaxseeds. The resultant FSF particles were melt-compounded at 30 wt% with PLA in a twin-screw extruder. Two multi-functionalized oils derived from linseed, namely epoxidized linseed oil (ELO) and maleinized linseed oil (MLO), were also incorporated during melt mixing at 2.5 and 5 parts per hundred resin (phr) of composite. The melt-compounded pellets were thereafter shaped into pieces by injection molding and characterized. Results showed that the addition of both multi-functionalized linseed oils successfully increased ductility, toughness, and thermal stability of the green composite pieces whereas water diffusion was reduced. The improvement achieved was related to both a plasticizing effect and, more interestingly, an enhancement of the interfacial adhesion between the biopolymer and the lignocellulosic particles by the reactive vegetable oils. The most optimal performance was attained for the MLO-containing green composite pieces, even at the lowest content, which was ascribed to the higher solubility of MLO with the PLA matrix. Therefore, the present study demonstrates the potential use of by-products or waste from flax (Linum usitatissimum L.) to obtain renewable raw materials of suitable quality to develop green composites with high performance for market applications such as rigid food packaging and food-contact disposable articles in the frame of the Circular Economy and Bioeconomy.This research work was funded by the Spanish Ministry of Science, Innovation, and Universities (MICIU) project numbers RTI2018-097249-B-C21 and MAT2017-84909-C2-2-R.Agüero, Á.; Lascano-Aimacaña, DS.; Garcia-Sanoguera, D.; Fenollar, O.; Torres Giner, S. (2020). Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance. Sustainability. 12(2):1-24. https://doi.org/10.3390/su12020652S124122Fritsch, C., Staebler, A., Happel, A., Cubero Márquez, M., Aguiló-Aguayo, I., Abadias, M., … Belotti, G. (2017). Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. Sustainability, 9(8), 1492. doi:10.3390/su9081492Bajpai, P. K., Singh, I., & Madaan, J. (2012). Development and characterization of PLA-based green composites. Journal of Thermoplastic Composite Materials, 27(1), 52-81. doi:10.1177/0892705712439571Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501. doi:10.1016/j.biortech.2010.05.092Saheb, D. N., & Jog, J. P. (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology, 18(4), 351-363. doi:10.1002/(sici)1098-2329(199924)18:43.0.co;2-xNdazi, B. S., & Karlsson, S. (2011). Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polymer Letters, 5(2), 119-131. doi:10.3144/expresspolymlett.2011.13Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 18(3), 422-429. doi:10.1007/s10924-010-0185-0Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017Montava-Jordà, S., Quiles-Carrillo, L., Richart, N., Torres-Giner, S., & Montanes, N. (2019). Enhanced Interfacial Adhesion of Polylactide/Poly(ε-caprolactone)/Walnut Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Polymers, 11(5), 758. doi:10.3390/polym11050758Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R., & Torres-Giner, S. (2018). On the use of acrylated epoxidized soybean oil as a reactive compatibilizer in injection-molded compostable pieces consisting of polylactide filled with orange peel flour. Polymer International, 67(10), 1341-1351. doi:10.1002/pi.5588Montava-Jordà, S., Torres-Giner, S., Ferrandiz-Bou, S., Quiles-Carrillo, L., & Montanes, N. (2019). Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. International Journal of Molecular Sciences, 20(6), 1378. doi:10.3390/ijms20061378Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042Singh, K. K., Mridula, D., Rehal, J., & Barnwal, P. (2011). Flaxseed: A Potential Source of Food, Feed and Fiber. Critical Reviews in Food Science and Nutrition, 51(3), 210-222. doi:10.1080/10408390903537241Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:13.0.co;2-wJhala, A. J., Weselake, R. J., & Hall, L. M. (2009). Genetically Engineered Flax: Potential Benefits, Risks, Regulations, and Mitigation of Transgene Movement. Crop Science, 49(6), 1943-1954. doi:10.2135/cropsci2009.05.0251Crops http://www.fao.org/faostat/en/#data/QCKhot, S. N., Lascala, J. J., Can, E., Morye, S. S., Williams, G. I., Palmese, G. R., … Wool, R. P. (2001). Development and application of triglyceride-based polymers and composites. Journal of Applied Polymer Science, 82(3), 703-723. doi:10.1002/app.1897Wool, R. P. (2005). POLYMERS AND COMPOSITE RESINS FROM PLANT OILS. Bio-Based Polymers and Composites, 56-113. doi:10.1016/b978-012763952-9/50005-8Samarth, N. B., & Mahanwar, P. A. (2015). Modified Vegetable Oil Based Additives as a Future Polymeric Material—Review. Open Journal of Organic Polymer Materials, 05(01), 1-22. doi:10.4236/ojopm.2015.51001Balanuca, B., Ghebaur, A., Stan, R., Vuluga, D. M., Vasile, E., & Iovu, H. (2018). New hybrid materials based on double-functionalized linseed oil and halloysite. Polymers for Advanced Technologies, 29(6), 1744-1752. doi:10.1002/pat.4279Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063Mahendran, A. R., Wuzella, G., Aust, N., Kandelbauer, A., & Müller, U. (2012). Photocrosslinkable modified vegetable oil based resin for wood surface coating application. Progress in Organic Coatings, 74(4), 697-704. doi:10.1016/j.porgcoat.2011.09.027Agüero, A., Morcillo, M. del C., Quiles-Carrillo, L., Balart, R., Boronat, T., Lascano, D., … Fenollar, O. (2019). Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers, 11(12), 1908. doi:10.3390/polym11121908Torres-Giner, S., Gimeno-Alcañiz, J. V., Ocio, M. J., & Lagaron, J. M. (2011). Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. Journal of Applied Polymer Science, 122(2), 914-925. doi:10.1002/app.34208Balart, J. F., Montanes, N., Fombuena, V., Boronat, T., & Sánchez-Nacher, L. (2017). Disintegration in Compost Conditions and Water Uptake of Green Composites from Poly(Lactic Acid) and Hazelnut Shell Flour. Journal of Polymers and the Environment, 26(2), 701-715. doi:10.1007/s10924-017-0988-3Barczewski, M., Sałasińska, K., & Szulc, J. (2019). Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polymer Testing, 75, 1-11. doi:10.1016/j.polymertesting.2019.01.017Torres-Giner, S., Chiva-Flor, A., & Feijoo, J. L. (2014). Injection-molded parts of polypropylene/multi-wall carbon nanotubes composites with an electrically conductive tridimensional network. Polymer Composites, 37(2), 488-496. doi:10.1002/pc.23204Keener, T. ., Stuart, R. ., & Brown, T. . (2004). Maleated coupling agents for natural fibre composites. Composites Part A: Applied Science and Manufacturing, 35(3), 357-362. doi:10.1016/j.compositesa.2003.09.014Yang, H.-S., Wolcott, M. P., Kim, H.-S., Kim, S., & Kim, H.-J. (2007). Effect of different compatibilizing agents on the mechanical properties of lignocellulosic material filled polyethylene bio-composites. Composite Structures, 79(3), 369-375. doi:10.1016/j.compstruct.2006.02.016Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789Mathew, A. P., Oksman, K., & Sain, M. (2005). Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97(5), 2014-2025. doi:10.1002/app.21779Shih, Y.-F., & Huang, C.-C. (2011). Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. Journal of Polymer Research, 18(6), 2335-2340. doi:10.1007/s10965-011-9646-yHarmia, T., & Friedrich, K. (1995). Fracture toughness and failure mechanisms in unreinforced and long-glass-fibre-reinforced PA66/PP blends. Composites Science and Technology, 53(4), 423-430. doi:10.1016/0266-3538(95)00031-3Bocqué, M., Voirin, C., Lapinte, V., Caillol, S., & Robin, J.-J. (2015). Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties. Journal of Polymer Science Part A: Polymer Chemistry, 54(1), 11-33. doi:10.1002/pola.27917Tábi, T., Égerházi, A. Z., Tamás, P., Czigány, T., & Kovács, J. G. (2014). Investigation of injection moulded poly(lactic acid) reinforced with long basalt fibres. Composites Part A: Applied Science and Manufacturing, 64, 99-106. doi:10.1016/j.compositesa.2014.05.001Hindryckx, F., Dubois, P., Patin, M., Jérôme, R., Teyssié, P., & Marti, M. G. (1995). Interfacial adhesion in polyethylene–kaolin composites: Improvement by maleic anhydride-grafted polyethylene. Journal of Applied Polymer Science, 56(9), 1093-1105. doi:10.1002/app.1995.070560909Quiles-Carrillo, L., Boronat, T., Montanes, N., Balart, R., & Torres-Giner, S. (2019). Injection-molded parts of fully bio-based polyamide 1010 strengthened with waste derived slate fibers pretreated with glycidyl- and amino-silane coupling agents. Polymer Testing, 77, 105875. doi:10.1016/j.polymertesting.2019.04.022Rubilar, M., Gutiérrez, C., Verdugo, M., Shene, C., & Sineiro, J. (2010). FLAXSEED AS A SOURCE OF FUNCTIONAL INGREDIENTS. Journal of soil science and plant nutrition, 10(3). doi:10.4067/s0718-95162010000100010Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031Quiles-Carrillo, L., Blanes-Martínez, M. M., Montanes, N., Fenollar, O., Torres-Giner, S., & Balart, R. (2018). Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 98, 402-410. doi:10.1016/j.eurpolymj.2017.11.039Li, M., Liu, P., Zou, W., Yu, L., Xie, F., Pu, H., … Chen, L. (2011). Extrusion processing and characterization of edible starch films with different amylose contents. Journal of Food Engineering, 106(1), 95-101. doi:10.1016/j.jfoodeng.2011.04.021Lourdin, D., Bizot, H., & Colonna, P. (1997). ?Antiplasticization? in starch-glycerol films? Journal of Applied Polymer Science, 63(8), 1047-1053. doi:10.1002/(sici)1097-4628(19970222)63:83.0.co;2-3Torres-Giner, S., Montanes, N., Boronat, T., Quiles-Carrillo, L., & Balart, R. (2016). Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. European Polymer Journal, 84, 693-707. doi:10.1016/j.eurpolymj.2016.09.057Perinović, S., Andričić, B., & Erceg, M. (2010). Thermal properties of poly(l-lactide)/olive stone flour composites. Thermochimica Acta, 510(1-2), 97-102. doi:10.1016/j.tca.2010.07.002Pilla, S., Gong, S., O’Neill, E., Rowell, R. M., & Krzysik, A. M. (2008). Polylactide-pine wood flour composites. Polymer Engineering & Science, 48(3), 578-587. doi:10.1002/pen.20971Dehghani, A., Madadi Ardekani, S., Al-Maadeed, M. A., Hassan, A., & Wahit, M. U. (2013). Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites. Materials & Design (1980-2015), 52, 841-848. doi:10.1016/j.matdes.2013.06.022Hristov, V., & Vasileva, S. (2003). Dynamic Mechanical and Thermal Properties of Modified Poly(propylene) Wood Fiber Composites. Macromolecular Materials and Engineering, 288(10), 798-806. doi:10.1002/mame.200300110Chieng, B., Ibrahim, N., Then, Y., & Loo, Y. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. Molecules, 19(10), 16024-16038. doi:10.3390/molecules191016024Liu, H., & Zhang, J. (2011). Research progress in toughening modification of poly(lactic acid). Journal of Polymer Science Part B: Polymer Physics, 49(15), 1051-1083. doi:10.1002/polb.22283Alam, J., Alam, M., Raja, M., Abduljaleel, Z., & Dass, L. (2014). MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour. International Journal of Molecular Sciences, 15(11), 19924-19937. doi:10.3390/ijms151119924MANSARAY, K. G., & GHALY, A. E. (1998). Thermogravimetric Analysis of Rice Husks in an Air Atmosphere. Energy Sources, 20(7), 653-663. doi:10.1080/00908319808970084Sánchez-Jiménez, P. E., Pérez-Maqueda, L. A., Perejón, A., & Criado, J. M. (2010). Generalized Kinetic Master Plots for the Thermal Degradation of Polymers Following a Random Scission Mechanism. The Journal of Physical Chemistry A, 114(30), 7868-7876. doi:10.1021/jp103171hMelendez-Rodriguez, B., Torres-Giner, S., Aldureid, A., Cabedo, L., & Lagaron, J. M. (2019). Reactive Melt Mixing of Poly(3-Hydroxybutyrate)/Rice Husk Flour Composites with Purified Biosustainably Produced Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Materials, 12(13), 2152. doi:10.3390/ma12132152Samal, S., Stuchlík, M., & Petrikova, I. (2017). Thermal behavior of flax and jute reinforced in matrix acrylic composite. Journal of Thermal Analysis and Calorimetry, 131(2), 1035-1040. doi:10.1007/s10973-017-6662-0Laaziz, S. A., Raji, M., Hilali, E., Essabir, H., Rodrigue, D., Bouhfid, R., & Qaiss, A. el kacem. (2017). Bio-composites based on polylactic acid and argan nut shell: Production and properties. International Journal of Biological Macromolecules, 104, 30-42. doi:10.1016/j.ijbiomac.2017.05.184Gonzalez, L., Agüero, A., Quiles-Carrillo, L., Lascano, D., & Montanes, N. (2019). Optimization of the Loading of an Environmentally Friendly Compatibilizer Derived from Linseed Oil in Poly(Lactic Acid)/Diatomaceous Earth Composites. Materials, 12(10), 1627. doi:10.3390/ma12101627Pfister, D. P., & Larock, R. C. (2010). Thermophysical properties of conjugated soybean oil/corn stover biocomposites. Bioresource Technology, 101(15), 6200-6206. doi:10.1016/j.biortech.2010.02.070Tham, W. L., Ishak, Z. A. M., & Chow, W. S. (2014). Water Absorption and Hygrothermal Aging Behaviors of SEBS-g-MAH Toughened Poly(lactic acid)/Halloysite Nanocomposites. Polymer-Plastics Technology and Engineering, 53(5), 472-480. doi:10.1080/03602559.2013.845208Davis, E. M., Minelli, M., Baschetti, M. G., Sarti, G. C., & Elabd, Y. A. (2012). Nonequilibrium Sorption of Water in Polylactide. Macromolecules, 45(18), 7486-7494. doi:10.1021/ma301484uNing, J., Nguyen, V., Huang, Y., Hartwig, K. T., & Liang, S. Y. (2018). Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search. The International Journal of Advanced Manufacturing Technology, 99(5-8), 1131-1140. doi:10.1007/s00170-018-2508-6Tanyildizi, H., & Şahin, M. (2015). Application of Taguchi method for optimization of concrete strengthened with polymer after high temperature. Construction and Building Materials, 79, 97-103. doi:10.1016/j.conbuildmat.2015.01.03

    Manufacturing and Characterization of Hybrid Composites with Basalt and Flax Fabrics and a Partially Bio-based Epoxy Resin

    Full text link
    [EN] This research is focused on manufacturing and characterization of hybrid composite laminates obtained different stacking sequences of basalt and flax fabrics with silane treatments embedded in a partially bio-sourced epoxy resin as matrix. They were manufactured by the vacuum-assisted resin infusion molding and mechanical properties were tested in tensile, flexural and impact conditions. The effect of the coupling agent on the fiber/matrix interface was studied by FESEM. The effect of temperature on mechanical properties was evaluated by DMTA and TMA. FESEM images revealed improved fiber/matrix interactions with silane treatment, having a more satisfactory effect on basalt fibers than on flax fibers because of its silica-based structure, leading to improved mechanical properties. It is worthy to note that the hybrid stacking sequence has no remarkable influence on the elongation at break. On the contrary, the hybrid stacking sequence offered a great influence on both the elastic modulus and the tensile strength.This research was funded by the Ministerio de Economía, Industria y Competitividad (MICINN) project number MAT2017-84909-C2-2-R. D. Lascano wants to thank UPV for the grant received though the PAID-01-18 program. Microscopy services at UPV are acknowledged for their help in collecting and analyzing FESEM images.Lascano-Aimacaña, DS.; Balart, R.; Garcia-Sanoguera, D.; Agüero-Rodríguez, Á.; Boronat, T.; Montanes, N. (2021). Manufacturing and Characterization of Hybrid Composites with Basalt and Flax Fabrics and a Partially Bio-based Epoxy Resin. Fibers and Polymers. 22(3):751-763. https://doi.org/10.1007/s12221-021-0209-5S751763223S. Yang, V. B. Chalivendra, and Y. K. Kim, Compos. Struct., 168, 120 (2017).R. Rahman and S. Z. F. S. Putra, “Tensile Properties of Natural and Synthetic Fiber-reinforced Polymer Composites”, pp.81–102, Elsevier Ltd., United Kingdom, 2019.B. Song, T. Wang, L. Wang, H. Liu, X. Mai, X. Wang, N. Wang, Y. Huang, Y. Ma, Y. Lu, E. K. Wujcik, and Z. Guo, Compos. Part B-Eng., 158, 259 (2019).C. Soutis, Prog. Aeronaut. Sci., 41, 143 (2005).R. A. Sullivan, JOM, 58, 77 (2006).E. Monaldo, F. Nerilli, and G. Vairo, Compos. Struct., 214, 246 (2019).J. Yin and Z. S. Wu, Constr. Build. Master., 17, 463 (2003).D. Church, Reinforced Plastics, 62, 35 (2018).S. E. Artemenko and Y. A. Kadykova, Fibre Chem., 40, 37 (2008).G. Marom, E. Drukker, A. Weinberg, and J. Banbaji, Composites, 17, 150 (1986).A.-C. Corbin, D. Soulat, M. Ferreira, A.-R. Labanieh, X. Gabrion, P. Malécot, and V. Placet, Compos. Part B-Eng., 181, 107582 (2020).O. Faruk, A. K. Bledzki, H. P. Fink, and M. Sain, Prog. Polym. Sci., 37, 1552 (2012).S. Shahinur and M. Hasan, “Natural Fiber and Synthetic Fiber Composites: Comparison of Properties, Performance, Cost and Environmental Benefits”, Vol.2, p.794, Elsevier Ltd., 2020.M. Ramesh, Prog. Mater. Sci., 102, 109 (2019).Y. Zhang, Y. Li, H. Ma, and T. Yu, Compos. Sci. Technol., 88, 172 (2013).S. S. Morye and R. P. Wool, Polym. Compos., 26, 407 (2005).M. Ramesh, C. Deepa, G. Arpitha, and V. Gopinath, World J. Eng., 16, 248 (2019).P. K. Bajpai, K. Ram, L. K. Gahlot, and V. K. Jha, Mater. Today: Proc., 5, 8699 (2018).K. Palanikumar, M. Ramesh, and K. Hemachandra Reddy, J. Nat. Fibers, 13, 321 (2016).V. Fiore, T. Scalici, G. Di Bella, and A. Valenza, Compos. Part B-Eng., 74, 74 (2015).T. Czigány, J. Vad, and K. Pölöskei, Period. Polytech., Mech. Eng., 49, 3 (2005).T. Deák and T. Czigány, Text. Res. J., 79, 645 (2009).M. Birkner, S. Spange, and K. Koschek, Polym. Compos., 40, 3115 (2019).J. J. Lee, J. Song, and H. Kim, Fiber. Polym., 15, 2329 (2014).M. Tehrani Dehkordi, H. Nosraty, M. M. Shokrieh, G. Minak, and D. Ghelli, Mater. Des., 43, 283 (2013).D. Matykiewicz, M. Barczewski, D. Knapski, and K. Skórczewska, Compos. Part B-Eng., 125, 157 (2017).D. Matykiewicz and M. Barczewski, Compos. Commun., 20, 100360 (2020).C. Sergi, J. Tirillò, M. C. Seghini, F. Sarasini, V. Fiore, and T. Scalici, Polymers, 11, 603 (2019).M. D. Samper, R. Petrucci, L. Sánchez-Nacher, R. Balart, and J. M. Kenny, Polym. Compos., 36, 1205 (2015).B. V. Ramnath, C. Elanchezhian, P. V. Nirmal, G. P. Kumar, V. S. Kumar, S. Karthick, S. Rajesh, and K. Suresh, Fiber. Polym., 15, 1251 (2014).J. Yang, J. Xiao, J. Zeng, L. Bian, C. Peng, and F. Yang, Fiber. Polym., 14, 759 (2013).Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz, and C. Mai, Compos. Part A-Appl. Sci. Manuf., 41, 806 (2010).H. A. Al-Qureshi, J. Mater. Process. Technol., 118, 58 (2001).H. Kishi, A. Fujita, H. Miyazaki, S. Matsuda, and A. Murakami, J. Appl. Polym. Sci., 102, 2285 (2006).W. Riemenschneider and H. M. Bolt, Ullmann’s Encycl. Ind. Chem., 12, 245 (2005).F. L. Jin, X. Li, and S. J. Park, J. Ind. Eng. Chem., 29, 1 (2015).B. Ferrero, V. Fombuena, O. Fenollar, T. Boronat, and R. Balart, Polym. Compos., 36, 1378 (2015).T. Boronat, V. Fombuena, D. Garcia-Sanoguera, L. Sanchez-Nacher, and R. Balart, Mater. Des., 68, 177 (2015).A. Carbonell-Verdu, L. Bernardi, D. Garcia-Garcia, L. Sanchez-Nacher, and R. Balart, Eur. Polym. J., 63, 1 (2015).S. Torres-Giner, N. Montanes, O. Fenollar, D. García-Sanoguera, and R. Balart, Mater. Des., 108, 648 (2016).D. Lascano, J. Valcárcel, R. Balart, L. Quiles-Carrillo, and T. Boronat, Ingenius, 23, 62 (2020).J. M. Park, W. G. Shin, and D. J. Yoon, Compos. Sci. Technol., 59, 355 (1999).J. Cruz and R. Fangueiro, Procedia Eng., 155, 285 (2016).H. Luo, G. Xiong, C. Ma, P. Chang, F. Yao, Y. Zhu, C. Zhang, and Y. Wan, Polym. Test., 39, 45 (2014).M. Sood and G. Dwivedi, Egypt. J. Pet., 27, 775 (2018).M. D. Samper, R. Petrucci, L. Sánchez-Nacher, R. Balart, and J. M. Kenny, Compos. Part B-Eng., 71, 203 (2015).R. Petrucci, C. Santulli, D. Puglia, E. Nisini, F. Sarasini, J. Tirillò, L. Torre, G. Minak, and J. M. Kenny, Compos. Part B-Eng., 69, 507 (2015).R. Petrucci, C. Santulli, D. Puglia, F. Sarasini, L. Torre, and J. M. Kenny, Mater. Des., 49, 728 (2013).R. Park and J. Jang, J. Mater. Sci., 34, 2903 (1999).L. V. J. Lassila, T. Nohrström, and P. K. Vallittu, Biomaterials, 23, 2221 (2002).F. Rezaei, R. Yunus, N. A. Ibrahim, and E. S. Mahdi, Polym.-Plast. Technol. Eng., 47, 351 (2008).D. Lascano, L. Quiles-Carrillo, R. Balart, T. Boronat, and N. Montanes, Materials, 12, 622 (2019).D. Garcia-Garcia, J. M. Ferri, T. Boronat, J. Lopez-Martinez, and R. Balart, Polym. Bull., 73, 3333 (2016).M. Evstatiev, S. Fakirov, B. Krasteva, K. Friedrich, J. A. Covas, and A. M. Cunha, Polym. Eng. Sci., 42, 826 (2002).I. D. G. Ary Subagia, Y. Kim, L. D. Tijing, C. S. Kim, and H. K. Shon, Compos. Part B-Eng., 58, 251 (2014).J. Zhang, K. Chaisombat, S. He, and C. H. Wang, Mater. Des., 36, 75 (2012).J. M. España, M. D. Samper, E. Fages, L. Sánchez-Nácher, and R. Balart, Polym. Compos., 34, 376 (2013).D. Bertomeu, D. García-Sanoguera, O. Fenollar, T. Boronat, and R. Balart, Polym. Compos., 33, 683 (2012).J. Militký, V. Kovačič, and J. Rubnerová, Eng. Fract. Mech., 69, 1025 (2002).P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol., 63, 1259 (2003).V. Fiore, G. Di Bella, and A. Valenza, Mater. Des., 32, 2091 (2011).G. Romhány, J. Karger-Kocsis, and T. Czigány, J. Appl. Polym. Sci., 90, 3638 (2003).M. S. M. Jusoh, C. Santulli, M. Y. M. Yahya, N. Hussein, and H. A. I. Ahmad, Mater. Sci. Eng. Adv. Res., 1, 19 (2016).B. H. Jones, D. R. Wheeler, H. T. Black, M. E. Stavig, P. S. Sawyer, N. H. Giron, M. C. Celina, T. N. Lambert, and T. M. Alam, Macromolecules, 50, 5014 (2017).R. A. Pethrick, E. A. Hollins, I. McEwan, E. A. Pollock, D. Hayward, and P. Johncock, Polym. Int., 39, 275 (1996).V. B. Gupta, J. Rich, L. T. Drazal, and C. Y. C. Lee, Polym. Eng. Sci., 25, 13 (1985).P. Czub, Macromol. Symp., 242, 60 (2006).R. J. Varley, W. Tian, K. H. Leong, A. Y. Leong, F. Fredo, and M. Quaresimin, Polym. Compos., 34, 320 (2013).V. B. Gupta and C. Brahatheeswaran, Polymer, 32, 1875 (1991)

    Kinetic Analysis of the Curing Process of Biobased Epoxy Resin from Epoxidized Linseed Oil by Dynamic Differential Scanning Calorimetry

    Full text link
    [EN] The curing process of epoxy resin based on epoxidized linseed oil (ELO) is studied using dynamic differential scanning calorimetry (DSC) in order to determine the kinetic triplet (E-a, f(alpha) and A) at different heating rates. The apparent activation energy, E-a, has been calculated by several differential and integral isoconversional methods, namely Kissinger, Friedman, Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Starink. All methods provide similar values of E-a (between 66 and 69 kJ/mol), and this shows independence versus the heating rate used. The epoxy resins crosslinking is characterized by a multi-step process. However, for the sake of the simplicity and to facilitate the understanding of the influence of the oxirane location on the curing kinetic, this can be assimilated to a single-step process. The reaction model has a high proportion of autocatalytic process, fulfilling that alpha(M) is between 0 and alpha(p) and alpha(M) < alpha(infinity)(p). Using as reference the model proposed by Sestak-Berggren, by obtaining two parameters (n and m) it is possible to obtain, on the one hand, the kinetic parameters and, on the other hand, a graphical comparison of the degree of conversion, alpha, versus temperature (T) at different heating rates with the average n and m values of this model. The good accuracy of the proposed model with regard to the actual values obtained by DSC gives consistency to the obtained parameters, thus suggesting the crosslinking of the ELO-based epoxy has apparent activation energies similar to other petroleum-derived epoxy resins.D.L. thanks UPV for the grant received through the PAID-01-18 program.Lascano-Aimacaña, DS.; Lerma-Canto, A.; Fombuena, V.; Balart, R.; Montanes, N.; Quiles-Carrillo, L. (2021). Kinetic Analysis of the Curing Process of Biobased Epoxy Resin from Epoxidized Linseed Oil by Dynamic Differential Scanning Calorimetry. Polymers. 13(8):1-15. https://doi.org/10.3390/polym13081279S11513

    Improved Performance of Environmentally Friendly Blends of Biobased Polyethylene and Kraft Lignin Compatibilized by Reactive Extrusion with Dicumyl Peroxide

    Full text link
    [EN] In this work, different contents (0.25, 0.50, 0.75, and 1 phr) of dicumyl peroxide (DCP) are incorporated into the bio-based high-density polyethylene (bioPE)/kraft lignin (KL) blends with a composition of 80 and 20 wt%, respectively with the aim of improving overall performance. The samples are obtained by reactive extrusion and injection-molding process, and then their overall performance is assessed by tensile tests, thermal analysis, optical and surface appearance, and wettability studies. The obtained mechanical properties confirm the successful interaction between bioPE and KL due to the addition of organic peroxide, which plays a key role in compatibilization. In particular, bioPE/KL blends with 1 phr of DCP achieve an increase in elongation at break of about 300% together with a noticeable increase in the impact strength of about 29% higher than the uncompatibilized bioPE/KL blend, while the tensile modulus decreases 42%. In addition, images obtained by field emission scanning electron microscopy show that the presence of DCP in the blends enhances better dispersion of KL into the bioPE matrix. The wettability analysis indicates that KL and DCP affect the hydrophobicity of the neat bioPE. Therefore, the resultant blends can be considered as potential sustainable polymers with balanced properties.S.R.-L. is a recipient of a Santiago Grisolía grant from Generalitat Valenciana (GVA) (GRISOLIAP/2019/132). D.L. thanks Universitat Politècnica de València (UPV) for the grant received through the PAID-01-18 program. J.I.-M. thanks the Spanish Ministry of Science, Innovation and Universities for his FPU grant (FPU19/01759). Microscopy services at UPV are acknowledged for their help in using and collecting FESEM images.Rojas-Lema, SP.; Ivorra-Martínez, J.; Lascano-Aimacaña, DS.; Garcia-Garcia, D.; Balart, R. (2021). Improved Performance of Environmentally Friendly Blends of Biobased Polyethylene and Kraft Lignin Compatibilized by Reactive Extrusion with Dicumyl Peroxide. Macromolecular Materials and Engineering. 306(9):1-12. https://doi.org/10.1002/mame.202100196S112306

    Manufacturing and Characterization of Environmentally Friendly Wood Plastic Composites Using Pinecone as a Filler into a Bio-Based High-Density Polyethylene Matrix

    Full text link
    [EN] The use of wood plastic composites (WPC) is growing very rapidly in recent years, in addition, the use of plastics of renewable origin is increasingly implemented because it allows to reduce the carbon footprint. In this context, this work reports on the development of composites of bio-based high density polyethylene (BioHDPE) with different contents of pinecone (5, 10, and 30 wt.%). The blends were produced by extrusion and injection-molded processes. With the objective of improving the properties of the materials, a compatibilizer has been used, namely polyethylene grafted with maleic anhydride (PE-g-MA 2 phr). The effect of the compatibilizer in the blend with 5 wt.% has been compared with the same blend without compatibilization. Mechanical, thermal, morphological, colorimetric, and wettability properties have been analyzed for each blend. The results showed that the compatibilizer improved the filler¿matrix interaction, increasing the ductile mechanical properties in terms of elongation and tensile strength. Regarding thermal properties, the compatibilizer increased thermal stability and improved the behavior of the materials against moisture. In general, the pinecone materials obtained exhibited reddish-brown colors, allowing their use as wood plastic composites with a wide range of properties depending on the filler content in the blend.Project with grant number PID2020-116496RB-C22 funded by the Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 and grant number AICO/2021/025 funded by Generalitat Valenciana.Morcillo, MDC.; Tejada, R.; Lascano-Aimacaña, DS.; Garcia-Garcia, D.; Garcia-Sanoguera, D. (2021). Manufacturing and Characterization of Environmentally Friendly Wood Plastic Composites Using Pinecone as a Filler into a Bio-Based High-Density Polyethylene Matrix. Polymers. 13(24):1-16. https://doi.org/10.3390/polym13244462S116132

    Sustainable materials with high insulation capacity obtained from wastes from hemp industry processed by wet-laid

    Get PDF
    [EN] This article reports on the revalorization of hemp waste from the textile industry, focusing on the development of new sustainable materials with high insulating properties. Wet-laid technology was used to manufacture nonwovens with different binding fibers, polylactic acid, and viscose fibers. The characterization of the acoustic insulating capacity was carried out using a Kundt tube, and the thermal insulating performance by measuring the heat transmission resistance (R) and thermal conductivity (lambda). The results showed that the developed nonwovens have lower thermal conductivity values of about 0.027-0.034 W/(m K), were even lower than those of traditional thermal insulating materials, being the sample with 100 g/m(2) of areal density and with a composition of 80% of hemp, 10% of polylactide and 10% of viscose the one with the lowest thermal conductivity (0.027 W/(mK). Their acoustic absorption capacity was around 0.76 at a frequency of 6 kHz, in samples containing high hemp waste (>80 wt%). However, the heterogeneous, discontinuous, and high void density structure that contributes to excellent insulating properties, lead to a decrease in their mechanical properties. This demonstrated that these materials are suitable for substituting traditional materials in insulating applications. Additionally, antifungal tests were carried out. However, hemp nonwovens proved to be inefficient against fungal proliferation.The authors disclosed receipt of the following financial support for research, authorship, and/or publication of this article: This Project is funded by CDTI (Centro para el Desarrollo Tecnologico Industrial) within the framework of grants for Technological Centres of Excellence "Cervera". CER-20211013.Gutiérrez-Moscardó, Ó.; Canet, M.; Gómez-Caturla, J.; Lascano-Aimacaña, DS.; Fages, E.; Sanchez-Nacher, L. (2022). Sustainable materials with high insulation capacity obtained from wastes from hemp industry processed by wet-laid. Textile Research Journal. 92(7-8):1098-1112. https://doi.org/10.1177/0040517521104605810981112927-
    corecore