13 research outputs found

    Biofilms bacterianos e infección

    Get PDF
    En los países desarrollados tendemos a pensar que las principales causas de mortalidad son las enfermedades cardiovasculares y el cáncer en sus múltiples modalidades. Sin embargo, los datos en Europa resultan elocuentes; las enfermedades infecciosas representan la segunda causa de mortalidad (14,9 millones de muertes), después de las enfermedades cardiovasculares (16,9 millones de muertes) y causan el doble de muertes que el cáncer (7,1 millones de muertes) (datos del World Health Organization, WHO, 2002). Los agentes infecciosos responsables de mortalidad en el hombre han ido evolucionando a medida que las medidas higiénicas y las técnicas médicas han ido evolucionando. Actualmente, las enfermedades infecciosas agudas causadas por bacterias patógenas especializadas como la difteria, tétanos, peste, cólera o la tosferina, que representaban la principal causa de muerte a principios del siglo XX, han sido controladas gracias a la acción de los antibióticos y de las vacunas. En su lugar, más de la mitad de las infecciones que afectan a pacientes ligeramente inmunocomprometidos son producidas por bacterias ubicuas, capaces de producir infecciones de tipo crónico, que responden pobremente a los tratamientos antibióticos y no pueden prevenirse mediante inmunización. Ejemplos de estas infecciones son la otitis media, endocarditis de válvulas nativas, infecciones urinarias crónicas, infecciones de próstata, osteomielitis y todas las infecciones relacionadas con implantes. El análisis directo de los implantes y tejidos de estas infecciones muestra claramente que en la mayoría de los casos la bacteria responsable de la infección crece adherida sobre el tejido o el implante formando comunidades de bacterias a las que se les ha denominado “biofilms”. Dentro del biofilm, las bacterias están protegidas de la acción de los anticuerpos, del ataque de las células fagocíticas y de los tratamientos antimicrobianos. En este artículo se describe el papel que juegan los biofilms en infecciones humanas persistentes

    Protection from Staphylococcus aureus mastitis associated with poly-N-acetyl beta-1,6 glucosamine specific antibody production using biofilm-embedded bacteria

    Get PDF
    Staphylococcus aureus vaccines based on bacterins surrounded by slime, surface polysaccharides coupled to protein carriers and polysaccharides embedded in liposomes administered together with non-biofilm bacterins confer protection against mastitis. However, it remains unknown whether protective antibodies are directed to slime-associated known exopolysaccharides and could be produced in the absence of bacterin immunizations. Here, a sheep mastitis vaccination study was carried out using bacterins, crude bacterial extracts or a purified exopolysaccharide from biofil

    The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation

    Get PDF
    The enterococcal surface protein, Esp, is a high-molecular-weight surface protein of unknown function whose frequency is significantly increased among infection-derived Enterococcus faecalis isolates. In this work, a global structural similarity was found between Bap, a biofilm-associated protein of Staphylococcus aureus, and Esp. Analysis of the relationship between the presence of the Esp-encoding gene (esp) and the biofilm formation capacity in E. faecalis demonstrated that the presence of the esp gene is highly associated (P < 0.0001) with the capacity of E. faecalis to form a biofilm on a polystyrene surface, since 93.5% of the E. faecalis esp-positive isolates were capable of forming a biofilm. Moreover, none of the E. faecalis esp-deficient isolates were biofilm producers. Depending on the E. faecalis isolate, insertional mutagenesis of esp caused either a complete loss of the biofilm formation phenotype or no apparent phenotypic defect. Complementation studies revealed that Esp expression in an E. faecalis esp-deficient strain promoted primary attachment and biofilm formation on polystyrene and polyvinyl chloride plastic from urine collection bags. Together, these results demonstrate that (i) biofilm formation capacity is widespread among clinical E. faecalis isolates, (ii) the biofilm formation capacity is restricted to the E. faecalis strains harboring esp, and (iii) Esp promotes primary attachment and biofilm formation of E. faecalis on abiotic surfaces

    SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus

    No full text
    Staphylococcus aureus biofilm formation is associated with the production of the polysaccharide intercellular adhesin (PIA/PNAG), the product of the ica operon. The staphylococcal accessory regulator, SarA, is a central regulatory element that controls the production of S. aureus virulence factors. By screening a library of Tn917 insertions in a clinical S. aureus strain, we identified SarA as being essential for biofilm development. Non-polar mutations of sarA in four genetically unrelated S. aureus strains decreased PIA/PNAG production and completely impaired biofilm development, both in steady state and flow conditions via an agr-independent mechanism. Accordingly, real-time PCR showed that the mutation in the sarA gene resulted in downregulation of the ica operon transcription. We also demonstrated that complete deletion of sigmaB did not affect PIA/PNAG production and biofilm formation, although it slightly decreased ica operon transcription. Furthermore, the sarA-sigmaB double mutant showed a significant decrease of ica expression but an increase of PIA/PNAG production and biofilm formation compared to the sarA single mutant. We propose that SarA activates S. aureus development of biofilm by both enhancing the ica operon transcription and suppressing the transcription of either a protein involved in the turnover of PIA/PNAG or a repressor of its synthesis, whose expression would be sigmaB-dependent

    SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus

    No full text
    Staphylococcus aureus biofilm formation is associated with the production of the polysaccharide intercellular adhesin (PIA/PNAG), the product of the ica operon. The staphylococcal accessory regulator, SarA, is a central regulatory element that controls the production of S. aureus virulence factors. By screening a library of Tn917 insertions in a clinical S. aureus strain, we identified SarA as being essential for biofilm development. Non-polar mutations of sarA in four genetically unrelated S. aureus strains decreased PIA/PNAG production and completely impaired biofilm development, both in steady state and flow conditions via an agr-independent mechanism. Accordingly, real-time PCR showed that the mutation in the sarA gene resulted in downregulation of the ica operon transcription. We also demonstrated that complete deletion of sigmaB did not affect PIA/PNAG production and biofilm formation, although it slightly decreased ica operon transcription. Furthermore, the sarA-sigmaB double mutant showed a significant decrease of ica expression but an increase of PIA/PNAG production and biofilm formation compared to the sarA single mutant. We propose that SarA activates S. aureus development of biofilm by both enhancing the ica operon transcription and suppressing the transcription of either a protein involved in the turnover of PIA/PNAG or a repressor of its synthesis, whose expression would be sigmaB-dependent

    The enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation

    No full text
    The enterococcal surface protein, Esp, is a high-molecular-weight surface protein of unknown function whose frequency is significantly increased among infection-derived Enterococcus faecalis isolates. In this work, a global structural similarity was found between Bap, a biofilm-associated protein of Staphylococcus aureus, and Esp. Analysis of the relationship between the presence of the Esp-encoding gene (esp) and the biofilm formation capacity in E. faecalis demonstrated that the presence of the esp gene is highly associated (P < 0.0001) with the capacity of E. faecalis to form a biofilm on a polystyrene surface, since 93.5% of the E. faecalis esp-positive isolates were capable of forming a biofilm. Moreover, none of the E. faecalis esp-deficient isolates were biofilm producers. Depending on the E. faecalis isolate, insertional mutagenesis of esp caused either a complete loss of the biofilm formation phenotype or no apparent phenotypic defect. Complementation studies revealed that Esp expression in an E. faecalis esp-deficient strain promoted primary attachment and biofilm formation on polystyrene and polyvinyl chloride plastic from urine collection bags. Together, these results demonstrate that (i) biofilm formation capacity is widespread among clinical E. faecalis isolates, (ii) the biofilm formation capacity is restricted to the E. faecalis strains harboring esp, and (iii) Esp promotes primary attachment and biofilm formation of E. faecalis on abiotic surfaces

    The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus

    No full text
    RNA-binding proteins (RBPs) are essential to fine-tune gene expression. RBPs containing the cold-shock domain are RNA chaperones that have been extensively studied. However, the RNA targets and specific functions for many of them remain elusive. Here, combining comparative proteomics and RBP-immunoprecipitation-microarray profiling, we have determined the regulon of the RNA chaperone CspA of Staphylococcus aureus. Functional analysis revealed that proteins involved in carbohydrate and ribonucleotide metabolism, stress response and virulence gene expression were affected by cspA deletion. Stress-associated phenotypes such as increased bacterial aggregation and diminished resistance to oxidative-stress stood out. Integration of the proteome and targetome showed that CspA post-transcriptionally modulates both positively and negatively the expression of its targets, denoting additional functions to the previously proposed translation enhancement. One of these repressed targets was its own mRNA, indicating the presence of a negative post-transcriptional feedback loop. CspA bound the 5'UTR of its own mRNA disrupting a hairpin, which was previously described as an RNase III target. Thus, deletion of the cspA 5'UTR abrogated mRNA processing and auto-regulation. We propose that CspA interacts through a U-rich motif, which is located at the RNase III cleavage site, portraying CspA as a putative RNase III-antagonist

    The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus

    No full text
    RNA-binding proteins (RBPs) are essential to fine-tune gene expression. RBPs containing the cold-shock domain are RNA chaperones that have been extensively studied. However, the RNA targets and specific functions for many of them remain elusive. Here, combining comparative proteomics and RBP-immunoprecipitation-microarray profiling, we have determined the regulon of the RNA chaperone CspA of Staphylococcus aureus. Functional analysis revealed that proteins involved in carbohydrate and ribonucleotide metabolism, stress response and virulence gene expression were affected by cspA deletion. Stress-associated phenotypes such as increased bacterial aggregation and diminished resistance to oxidative-stress stood out. Integration of the proteome and targetome showed that CspA post-transcriptionally modulates both positively and negatively the expression of its targets, denoting additional functions to the previously proposed translation enhancement. One of these repressed targets was its own mRNA, indicating the presence of a negative post-transcriptional feedback loop. CspA bound the 5'UTR of its own mRNA disrupting a hairpin, which was previously described as an RNase III target. Thus, deletion of the cspA 5'UTR abrogated mRNA processing and auto-regulation. We propose that CspA interacts through a U-rich motif, which is located at the RNase III cleavage site, portraying CspA as a putative RNase III-antagonist

    N-terminal acetylation mutants affect alpha-synuclein stability, protein levels and neuronal toxicity

    No full text
    Alpha-synuclein (aSyn) protein levels are sufficient to drive Parkinson's disease (PD) and other synucleinopathies. Despite the biomedical/therapeutic potential of aSyn protein regulation, little is known about mechanisms that limit/control aSyn levels. Here, we investigate the role of a post-translational modification, Nterminal acetylation, in aSyn neurotoxicity. N-terminal acetylation occurs in all aSyn molecules and has been proposed to determine its lipid binding and aggregation capacities; however, its effect in aSyn stability/neurotoxicity has not been evaluated. We generated N-terminal mutants that alter or block physiological aSyn Nterminal acetylation in wild-type or pathological mutant E46K aSyn versions and confirmed N-terminal acetylation status by mass spectrometry. By optical pulse-labeling in living primary neurons we documented a reduced half-life and accumulation of aSyn N-terminal mutants. To analyze the effect of N-terminal acetylation mutants in neuronal toxicity we took advantage of a neuronal model where aSyn toxicity was scored by longitudinal survival analysis. Salient features of aSyn neurotoxicity were previously investigated with this approach. aSyn-dependent neuronal death was recapitulated either by higher aSyn protein levels in the case of WT aSyn, or by the combined effect of protein levels and enhanced neurotoxicity conveyed by the E46K mutation. aSyn Nterminal mutations decreased E46K aSyn-dependent neuronal death both by reducing protein levels and, importantly, by reducing the intrinsic E46K aSyn toxicity, being the D2P mutant the least toxic. Together, our results illustrate that the N-terminus determines, most likely through its acetylation, aSyn protein levels and toxicity, identifying this modification as a potential therapeutic target

    N-terminal acetylation mutants affect alpha-synuclein stability, protein levels and neuronal toxicity

    No full text
    Alpha-synuclein (aSyn) protein levels are sufficient to drive Parkinson's disease (PD) and other synucleinopathies. Despite the biomedical/therapeutic potential of aSyn protein regulation, little is known about mechanisms that limit/control aSyn levels. Here, we investigate the role of a post-translational modification, Nterminal acetylation, in aSyn neurotoxicity. N-terminal acetylation occurs in all aSyn molecules and has been proposed to determine its lipid binding and aggregation capacities; however, its effect in aSyn stability/neurotoxicity has not been evaluated. We generated N-terminal mutants that alter or block physiological aSyn Nterminal acetylation in wild-type or pathological mutant E46K aSyn versions and confirmed N-terminal acetylation status by mass spectrometry. By optical pulse-labeling in living primary neurons we documented a reduced half-life and accumulation of aSyn N-terminal mutants. To analyze the effect of N-terminal acetylation mutants in neuronal toxicity we took advantage of a neuronal model where aSyn toxicity was scored by longitudinal survival analysis. Salient features of aSyn neurotoxicity were previously investigated with this approach. aSyn-dependent neuronal death was recapitulated either by higher aSyn protein levels in the case of WT aSyn, or by the combined effect of protein levels and enhanced neurotoxicity conveyed by the E46K mutation. aSyn Nterminal mutations decreased E46K aSyn-dependent neuronal death both by reducing protein levels and, importantly, by reducing the intrinsic E46K aSyn toxicity, being the D2P mutant the least toxic. Together, our results illustrate that the N-terminus determines, most likely through its acetylation, aSyn protein levels and toxicity, identifying this modification as a potential therapeutic target
    corecore