14,582 research outputs found
Open String/Open D-Brane Dualities: Old and New
We examine magnetic and electric near horizon regions of maximally
supersymmetric D-brane and NS5-brane bound states and find transformations
between near horizon regions with worldvolume dual magnetic and electric
fluxes. These point to dual formulations of NCYM, NCOS and OD theories in
the limit of weak coupling and large spatial or temporal non-commutativity
length scale in terms of weakly coupled theories with fixed worldvolume dual
non-commutativity based on open D-branes. We also examine the strong coupling
behavior of the open D-brane theories and propose a unified web of dualities
involving strong/weak coupling as well as large/small non-commutativity scale.Comment: 33 pages, Latex, 8 diagrams, added references and a remar
Estimates of rates for dissociative recombination of NO + e via various mechanisms
We estimate rates for the dissociative recombination (DR) of NO +
e. Although accurate excited state potential energy curves for the excited
states of the neutral are not available, we estimate that the 1 {\Phi}
and the 1 {\Pi} states of the neutral may intersect the ground state
cation potential energy surface near its equilibrium geometry. Using fixed
nuclei scattering calculations we estimate the rate for direct DR via these
states and find it to be significant. We also perform approximate calculations
of DR triggered by the indirect mechanism, which suggest that the indirect DR
rate for NO is insignificant compared to the direct rate.Comment: Submitted to Phys Rev
Reply to Comment on "A local realist model for correlations of the singlet state"
The general conclusion of Seevinck and Larsson is that our model exploits the
so-called coincidence-time loophole and produces sinusoidal (quantum-like)
correlations but does not model the singlet state because it does not violate
the relevant Bell inequality derived by Larsson and Gill, since in order to
obtain the sinusoidal correlations the probability of coincidences in our model
goes to zero. In this reply, we refute their arguments that lead to this
conclusion and demonstrate that our model can reproduce results of photon and
ion-trap experiments with frequencies of coincidences that are not in conflict
with the observations.Comment: Corrected typo
An M-theory solution generating technique and SL(2,R)
In this paper we generalize the O(p+1,p+1) solution generating technique
(this is a method used to deform Dp-branes by turning on a NS-NS B-field) to
M-theory, in order to be able to deform M5-brane supergravity solutions
directly in eleven dimensions, by turning on a non zero three form A. We find
that deforming the M5-brane, in some cases, corresponds to performing certain
SL(2,R) transformations of the Kahler structure parameter for the three-torus,
on which the M5-brane has been compactified. We show that this new M-theory
solution generating technique can be reduced to the O(p+1,p+1) solution
generating technique with p=4. Further, we find that it implies that the open
membrane metric and generalized noncommutativity parameter are manifestly
deformation independent for electric and light-like deformations. We also
generalize the O(p+1,p+1) method to the type IIA/B NS5-brane in order to be
able to deform NS5-branes with RR three and two forms, respectively. In the
type IIA case we use the newly obtained solution generating technique and
deformation independence to derive a covariant expression for an open D2-brane
coupling, relevant for OD2-theory.Comment: 24 pages, Latex. v2:Sections 3.2 and 3.3 improved. v3:Some
clarifications added. Version published in JHE
Minority Economic Development: The Problem of Business Failures
Inflammatory pseudotumour is a rare condition that can affect various organs. The clinical and histologic appearance of the pseudotumour may mimic haematological, lymphoproliferative, paraneoplastic or malignant processes. A previously healthy 39-year-old man presented with nephrotic syndrome. He had a history of headaches, nausea and swollen ankles. Computed tomography of the abdomen revealed a 6-cm mass in the spleen. Following a renal biopsy, a diagnosis of membranoproliferative glomerulonephritis (MPGN) type I was made. Splenectomy was performed and the examination revealed a mixed population of lymphocytes with predominantly T-cells, B-cells and lymphoplasmacytoid cells. Immunostaining confirmed that the small cells were mostly T-cells positive for all T-cell markers including CD2, CD3, CD4, CD5, CD7 and CD8. A diagnosis of inflammatory pseudotumour was established. The removal of the spleen was followed by remission of glomerulonephritis, but it was complicated by a subphrenic abscess and pneumonia. This association between an inflammatory pseudotumour of the spleen and MPGN has not been previously described. Abnormal immune response due to the inflammation leading to secondary glomerulonephritis might be the main pathogenic mechanism
A Random Access Protocol for Pilot Allocation in Crowded Massive MIMO Systems
The Massive MIMO (multiple-input multiple-output) technology has great
potential to manage the rapid growth of wireless data traffic. Massive MIMO
achieves tremendous spectral efficiency by spatial multiplexing of many tens of
user equipments (UEs). These gains are only achieved in practice if many more
UEs can connect efficiently to the network than today. As the number of UEs
increases, while each UE intermittently accesses the network, the random access
functionality becomes essential to share the limited number of pilots among the
UEs. In this paper, we revisit the random access problem in the Massive MIMO
context and develop a reengineered protocol, termed strongest-user collision
resolution (SUCRe). An accessing UE asks for a dedicated pilot by sending an
uncoordinated random access pilot, with a risk that other UEs send the same
pilot. The favorable propagation of Massive MIMO channels is utilized to enable
distributed collision detection at each UE, thereby determining the strength of
the contenders' signals and deciding to repeat the pilot if the UE judges that
its signal at the receiver is the strongest. The SUCRe protocol resolves the
vast majority of all pilot collisions in crowded urban scenarios and continues
to admit UEs efficiently in overloaded networks.Comment: To appear in IEEE Transactions on Wireless Communications, 16 pages,
10 figures. This is reproducible research with simulation code available at
https://github.com/emilbjornson/sucre-protoco
Random Access Protocols for Massive MIMO
5G wireless networks are expected to support new services with stringent
requirements on data rates, latency and reliability. One novel feature is the
ability to serve a dense crowd of devices, calling for radically new ways of
accessing the network. This is the case in machine-type communications, but
also in urban environments and hotspots. In those use cases, the high number of
devices and the relatively short channel coherence interval do not allow
per-device allocation of orthogonal pilot sequences. This article motivates the
need for random access by the devices to pilot sequences used for channel
estimation, and shows that Massive MIMO is a main enabler to achieve fast
access with high data rates, and delay-tolerant access with different data rate
levels. Three pilot access protocols along with data transmission protocols are
described, fulfilling different requirements of 5G services
Random Pilot and Data Access in Massive MIMO for Machine-type Communications
A massive MIMO system, represented by a base station with hundreds of
antennas, is capable of spatially multiplexing many devices and thus naturally
suited to serve dense crowds of wireless devices in emerging applications, such
as machine-type communications. Crowd scenarios pose new challenges in the
pilot-based acquisition of channel state information and call for pilot access
protocols that match the intermittent pattern of device activity. A joint pilot
assignment and data transmission protocol based on random access is proposed in
this paper for the uplink of a massive MIMO system. The protocol relies on the
averaging across multiple transmission slots of the pilot collision events that
result from the random access process. We derive new uplink sum rate
expressions that take pilot collisions, intermittent device activity, and
interference into account. Simplified bounds are obtained and used to optimize
the device activation probability and pilot length. A performance analysis
indicates how performance scales as a function of the number of antennas and
the transmission slot duration
- …