25,593 research outputs found

    Study of hot wire techniques in low density flows with high turbulence levels

    Get PDF
    Prediction of heat, mass, species, and momentum fluxes in a space vehicle and aerodynamic noise production by supersonic jet and rocket exhausts requires a predictability of the associated turbulence fields. The hot wire is a technique that will allow an experimental determination of turbulent properties

    Fast-acting calorimeter measures heat output of plasma gun accelerator

    Get PDF
    Calorimeter measures the exhaust energy from a shot of a pulsed plasma gun accelerator. It has a fast response time and requires only one measurement to determine the total energy. It uses a long ribbon of copper foil wound around a glass frame to form a reentrant cavity

    Experimental and evaluation studies of a coaxial plasma gun accelerator Final report

    Get PDF
    Pulsed coaxial plasma gun accelerators in space thrustor developmen

    Thermal and Fragmentation Properties of Star-forming Clouds in Low-metallicity Environments

    Full text link
    The thermal and chemical evolution of star-forming clouds is studied for different gas metallicities, Z, using the model of Omukai (2000), updated to include deuterium chemistry and the effects of cosmic microwave background (CMB) radiation. HD-line cooling dominates the thermal balance of clouds when Z \~ 10^{-5}-10^{-3} Z_sun and density ~10^{5} cm^{-3}. Early on, CMB radiation prevents the gas temperature to fall below T_CMB, although this hardly alters the cloud thermal evolution in low-metallicity gas. From the derived temperature evolution, we assess cloud/core fragmentation as a function of metallicity from linear perturbation theory, which requires that the core elongation E := (b-a)/a > E_NL ~ 1, where a (b) is the short (long) core axis length. The fragment mass is given by the thermal Jeans mass at E = E_NL. Given these assumptions and the initial (gaussian) distribution of E we compute the fragment mass distribution as a function of metallicity. We find that: (i) For Z=0, all fragments are very massive, > 10^{3}M_sun, consistently with previous studies; (ii) for Z>10^{-6} Z_sun a few clumps go through an additional high density (> 10^{10} cm^{-3}) fragmentation phase driven by dust-cooling, leading to low-mass fragments; (iii) The mass fraction in low-mass fragments is initially very small, but at Z ~ 10^{-5}Z_sun it becomes dominant and continues to grow as Z is increased; (iv) as a result of the two fragmentation modes, a bimodal mass distribution emerges in 0.01 0.1Z_sun, the two peaks merge into a singly-peaked mass function which might be regarded as the precursor of the ordinary Salpeter-like IMF.Comment: 38 pages, 16 figures, ApJ in pres

    Validity of adiabaticity in Cavity QED

    Full text link
    This paper deals with the concept of adiabaticity for fully quantum mechanically cavity QED models. The physically interesting cases of Gaussian and standing wave shapes of the cavity mode are considered. An analytical approximate measure for adiabaticity is given and compared with numerical wave packet simulations. Good agreement is obtained where the approximations are expected to be valid. Usually for cavity QED systems, the large atom-field detuning case is considered as the adiabatic limit. We, however, show that adiabaticity is also valid, for the Gaussian mode shape, in the opposite limit. Effective semiclassical time dependent models, which do not take into account the shape of the wave packet, are derived. Corrections to such an effective theory, which are purely quantum mechanical, are discussed. It is shown that many of the results presented can be applied to time dependent two-level systems.Comment: 10 pages, 9 figure

    ECONOMIC EVALUATION OF INCOME PROTECTION CHOICES FOR WEST TENNESSEE CORN PRODUCERS

    Get PDF
    Farmers need information about the expected value and variability of net revenues for alternative crop insurance and futures hedging strategies to manage risk. Specifically, the model will determine which risk management strategies are most desirable under various levels of risk aversion. The unstable futures basis relation in the data used in the simulation model contributed to increased variability of net revenues. In general, none of the crop insurance or hedging strategies markedly reduced variability of net revenue and relative riskiness when compared with the cash strategy. Revenue Assurance strategies were the most effective at setting a floor on net revenues. As a result, Revenue Assurance products may perform well for extremely risk averse producers.Marketing, Risk and Uncertainty,

    Confocal unstable-resonator semiconductor laser

    Get PDF
    GaAs/GaAlAs heterostructure lasers with a monolithic confocal unstable resonator were demonstrated. The curved mirrors satisfying the confocal condition were fabricated by etching. Close to threshold, the lasers operate in a single lateral mode with a nearly collimated output beam. A single-lobe far-field intensity distribution as narrow as 1.90 full width at half maximum was measured

    Thermal and hydrodynamic effects in the ordering of lamellar fluids

    Full text link
    Phase separation in a complex fluid with lamellar order has been studied in the case of cold thermal fronts propagating diffusively from external walls. The velocity hydrodynamic modes are taken into account by coupling the convection-diffusion equation for the order parameter to a generalised Navier-Stokes equation. The dynamical equations are simulated by implementing a hybrid method based on a lattice Boltzmann algorithm coupled to finite difference schemes. Simulations show that the ordering process occurs with morphologies depending on the speed of the thermal fronts or, equivalently, on the value of the thermal conductivity {\xi}. At large value of {\xi}, as in instantaneous quenching, the system is frozen in entangled configurations at high viscosity while consists of grains with well ordered lamellae at low viscosity. By decreasing the value of {\xi}, a regime with very ordered lamellae parallel to the thermal fronts is found. At very low values of {\xi} the preferred orientation is perpendicular to the walls in d = 2, while perpendicular order is lost moving far from the walls in d = 3.Comment: 8 pages, 3 figures. Accepted for publication in Phil. Trans. of Royal Soc, Ser

    Collapse of a Molecular Cloud Core to Stellar Densities: The First Three-Dimensional Calculations

    Get PDF
    We present results from the first three-dimensional calculations ever to follow the collapse of a molecular cloud core (~ 10^{-18} g cm^{-3}) to stellar densities (> 0.01 g cm^{-3}). The calculations resolve structures over 7 orders of magnitude in spatial extent (~ 5000 AU - 0.1 R_\odot), and over 17 orders of magnitude in density contrast. With these calculations, we consider whether fragmentation to form a close binary stellar system can occur during the second collapse phase. We find that, if the quasistatic core that forms before the second collapse phase is dynamically unstable to the growth of non-axisymmetric perturbations, the angular momentum extracted from the central regions of the core, via gravitational torques, is sufficient to prevent fragmentation and the formation of a close binary during the subsequent second collapse.Comment: ApJ Letters, in press (will appear in Nov 20 issue; available from the ApJ Rapid Release web page). 7 pages, incl. 5 figures. Also available at http://www.mpia-hd.mpg.de/theory/bat

    Thermal Instability and the Formation of Clumpy Gas Clouds

    Full text link
    The radiative cooling of optically thin gaseous regions and the formation of a two-phase medium and of cold gas clouds with a clumpy substructure is investigated. In optically thin clouds, the growth rate of small isobaric density perturbations is independent of their length scale. However, the growth of a perturbation is limited by its transition from isobaric to isochoric cooling. The temperature at which this transition occurs decreases with the length scale of the perturbation. Consequently small scale perturbations have the potential to reach higher amplitudes than large scale perturbations. When the amplitude becomes nonlinear, advection overtakes the pressure gradient in promoting the compression resulting in an accelerated growth of the disturbance. The critical temperature for transition depends on the initial amplitude. The fluctuations which can first reach nonlinearity before their isobaric to isochoric transition will determine the characteristic size and mass of the cold dense clumps which would emerge from the cooling of an initially nearly homogeneous region of gas. Thermal conduction is in general very efficient in erasing isobaric, small-scale fluctuations, suppressing a cooling instability. A weak, tangled magnetic field can however reduce the conductive heat flux enough for low-amplitude fluctuations to grow isobarically and become non-linear if their length scales are of order 0.01 pc. Finally, we demonstrate how a 2-phase medium, with cold clumps being pressure confined in a diffuse hot residual background component, would be sustained if there is adequate heating to compensate the energy loss.Comment: 26 pages, Latex, 10 postscript figures, ApJ, in pres
    corecore